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i. 0 INTRODUCTION

Eight monthly reports were published during the study. They con-

sisted of work notes prepared during each month and were in rough draft form.

This Appendix summarizes the technological survey material presented in the

monthly reports. The large volume of material presented in the monthly reports

precludes complete coverage in the final report, therefore a condensation of

the material appears here. The outline in Monthly Report 8 will provide topic

and material location information for all the monthly reports. The following

outlines the condensed technological survey material presented in this Appendix

volume.
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3.0 MISSIONANALYSIS

3.1 LAUNCHVEHICLECAPABILITIES

The launch vehicles considered for the D°S.M.C.S. mission are

the Saturn IB/Centaur_ Saturn IB and Titan III C. Payloads that these vehicles

can place in earth orbit were determined as a function of circular orbital al-

titude and inclination for launches from Eastern and Western test ranges. This

information was obtained by means of a trajectory computer program which opti-

mizes the direct burn flight profile to place the maximum payload into a 185

kilometer circular orbit. The payloads at higher orbital altitudes were ob-

tained by first computing the characteristic velocity requirement to transfer

from the 189 kilometer orbit to the higher circular orbit altitude on a

Hohmann ellipse using the equation:

' _[ [ R + hI _+hI _+hl
mY : __a_ (l ) i + _ + 1

+h I R + h2 R+h 2 R+h 2

(i)

!

where

AV =

=

R =

hI =

characteristic velocity meters/second

earth gravity constant3.98604 x 105 kmS/sec 2

earth radius, 6378.39 km

lower circular orbit altitude 185 kilometers

h2 = upper circular orbit altitude, kilometers

SGC 920FR-I
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The payload weight was then computedfrom the characteristic velocity equation:

i

i

I

i

i

I

i

I

I

I

I
I

I
I

where

w
p o Lg ±s /o p s

W
o

W __

S

sp

go --

total weight injected into a 185 kilometer orbit

(kilograms)

stage weight inerts (kilograms)

specific impulse (sec)

gravity acceleration (9.81 meters/sec 2)

Figure 3.1-1 presents payload capabilities for the three launch

vehicles as a function of orbit inclination for the 185 kilometer circular

parking orbit. DSMCS parking orbit payloads are available from the figure at

90o inclination. The Saturn V launch vehicle provides payload capabilities in

excess of DSMCS requirements and therefore was not considered in this study.

Shroud configurations for the launch vehicles of interest are shown in Figures

3.1-2 through 3.1-6. (Reference 3.1-1.)

Reference 3.1-i, SNAP-8 Unmanned Applications Study SGC 778FR-I, Summary Volume.

SGC 920FR-I

Volume III Page 6
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3.2 LAUNCH SITE SELECTION

Figures 3.2-1 and 3.2-2 plot payload capabilities as a function of

orbital altitudes for the Saturn IB/Centaur, Saturn IB and Titan IIIC for launches

into polar orbit from the Eastern (ETR) and Western (WTR) Test Ranges respectively.

Table 3.2-1 presents the payloads required for the various missions. Selected

orbit altitudes discussed in Section 3.3.1, Line of Sight to Spacecraft, were

used to derive the available payload weights of Table 3.2-1.

The Saturn IB is the preferred launch vehicle for DSMCS applica-

tions. A sacrifice in payload compared to the Saturn IB/Centaur is accepted for

the increased packaging volume made available by the 6.1 meter (20 ft) diameter

Saturn IB shroud. The standard Saturn IB/Centaur shroud provides only 3.05

meters (i0 ft) diameter for payload. The Voyager 6.1 meter (20 ft) diameter

Saturn IB/Centaur shroud, Figure 3.1-3, could be used but a payload sacrifice

is imposed because of the large shroud which is attached to the S-IVB stage

and surrounds the Centaur stage as well as the payload.

SGC 920FR-I
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3.3

3.3.1

ORBIT SELECTION ANALYSIS

LINE OF SIGHT TO SPACECRAFT

3- 3- i. i OBJECTIVE

Selected DSMCS orbits corresponding to a variety of spacecraft

trajectories were calculated. This was accomplished through the use of a

three dimensional, two-body interplanetary trajectory computer program. The

program developed specifically for this task_ features an iterative routine which

can be employed to solve for DSMCS orbits that provide continuous line of sight

for a given mission.

3.3.1.2 SU_RY

The general problem of the DSMCS/Spacecraft line of sight re-

duces to finding the appropriate orbital precession rate to provide continuous

line of _ight during given spacecraft missions. The satellite-spacecraft ge-

ometry is shown in Figure 3.3.1.2-1.

Figure 3.3.1.2-2 illustrates the DSMCS in a typical orbit with

orbit altitude h of approximately i/2 earth radius with the orbit plane normal

to the spacecraft/earth radial vector. The angle _ represents the visibility

band. Thus, if the radial vector is kept within _ DSMCS/spacecraft line of

sight will be maintained. Note that in Figure 3.3.1.2-3 when the orbit altitude

h is increased, the visibility band G also increases. In Figure 3.3.1.2-4 the

DSMCS orbit plane is positioned approximately parallel to the earth/spacecraft

radial vector. It is interesting to note here that some occultation will occur

even with exceedingly large orbit altitudes. The DSMCS orbit altitude becomes

somewhat less important with proper orientation of the orbit plane as shown in

Figure 3.3.1.2-5. As has been shown in Section 3.3.3 the Earth radius has been

extended 40 km to accommodate atmospheric attenuation influences.

It is apparent that suitable results for the general satellite/

spacecraft line-of-sight problem can be achieved through the proper orientation

of the satellite orbit plane and a selection of the minimum orbit altitude. The

most favorable line-of-sight results are obtained when the earth/spacecraft

radial vector is normal to the satellite orbit plane. However, in the case of

an inertially fixed satellite orbit plane_ the retention of this angle is not

SGC 920FR-I
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always possible. In fact, the radial vector can move outside of the visibility

band due to the relative movements of b_1_ _1_V_±_ _.

If the heliocentric spacecraft trajectory is known, an angle

can be determined through which the satellite orbit plane must be periodically

rotated in order to maintain line of sight. With the angle of rotation and

time of plane change known, a method to produce the desired plane change is

required. Nodal precession from an orbit precessing the desired amount and

in the proper direction would provide a passive solution, passive from the

standpoint of not requiring satellite onboard maneuvers. Within certain limits

the satellite inclination and orbit altitude can be varied to yield a wide

range of nodal precession rates in the direction of or against the orbital mo-

tion of the satellite. However, to be consistent with the requirements of mini-

mum orbit altitude for maximum payload_ the satellite inclination is restricted

to a few degrees from polar. As the compliment angle (90-inclination) of the

inclination increases, a corresponding increase in orbit altitude is required to

eliminate the occultation occurring from the satellite moving more frequently

behind the earth.

The preceding analysis is applied to the following spacecraft/

DSMCS missions.

i) Mercury Flyby - Fast transit

2) _nned _rs Orbit and Return - 30 day stay

3) Jupiter Flyby - 1973 opportunity - Fast transit

4) Jupiter Flyby - 1978 opportunity - Fast transit

5) Jupiter Flyby - 1978 opportunity - Slow transit

The spacecraft heliocentric trajectory parameters for these

missions along with a Venus mission that could not be satisfied are presented

in Tables3.3.1.2-1 through 3.3.1.2-6. Table 3.3.1.2-7 summarizes DSMCS orbits

required for the corresponding missions. Figures 3.3.1.2-6, -7 and -8 present

precession rates versus altitudes for inclinations from polar orbit to ± 5

degrees. Each curve represents the interest area of altitudes surrounding the

altitudes noted in Table 3.3.1.2-7 that provide continuous line of sight for

the three types of missions. Table 3.3.1.2-8 is a general presentation of in-

clination from polar orbit and precession rate for altitudes to 1800 kilometers.

SGC 920FR-I
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The computer program used to determine line of sight values

describes the motion of a spacecraft in its heliocentric orbit, the motion

of an earth orbiting satellite, and computes the line of sight properties be-

tween the two. The program was written in the Fortran IV programming language

for the IBM 7000 series computers.

METHOD OF APPROACH

In order to develop a computer program for the general line of

sight problem 3 it was necessary to compute the relative motion of three bodies,

namely: earth motion in heliocentric coordinates, satellite motion in earth

orbit, and spacecraft motion in heliocentric coordinates.

The following is an outline of the computational procedure:

A. Given heliocentric ecliptic orbital parameters: semi-major

axis (a), orbit inclination (i)_ argument of perigee (_), longitude of the as-

cending node (_), eccentricity (e), radial distance from Sun center (r), right

ascension (_), and declination (_), compute the orbital motion of the earth and

the spacecraft.

B. Given initial geocentric equatorial orbit parameters a, i,

e, r, and e. Compute the orbital motion of the earth orbiting satellite in

geocentric equatorial coordinates. Orbital perturbation arising from nodal

precession is considered.

C. Transform satellite motion from geocentric equatorial motion

to geocentric ecliptic coordinates, and to heliocentric coordinates.

D. Transform spacecraft motion from heliocentric ecliptic to

geocentric ecliptic.

E. Compute component of unit vector from earth center to satellite

in geocentric ecliptic coordinates.

F. Compute component of line of sight vector from satellite to

spacecraft in geocentric ecliptic coordinates.

G. Compute look angle (_) between line of sight vector and the

satellite position vector.

SGC 920FR-I
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H. Compute the instantaneous minimum circular satellite altitude

which will result in a continuous unbroken line of sight between spacecz'afL _md

satellite.

The computational procedure presented in steps A through H is a

"real time" solution, that is, the real time motions of the three aforementioned

bodies are considered. At each computational intervalj the satellite's orbit is

divided into 36 equal increments of ten degrees each at which time the look angles

and minimum satellite orbit altitudes are computed. The 36 look angles are eval-

uated to determine the minimum circular satellite orbit which will yield the re-

quired continuous line of sight at that instantanous real time position. This

procedure is repeated for every computational increment throughout the duration

of the spacecraft's flight_ and the value for the minimum satellite circular or-

bit at each step is stored. The stored values of the minimum satellite circular

orbit altitude are then compared to yield the smallest value for the satellite's

orbit altitude that will result in the continuous line of sight for the duration

of the spacecraft mission.

MATHEMATICAL FORMULATION

The method employed to describe the relative orbital motions of

the earth, spacecraft, and satellite is the several conventional Keplerian equa-

tions and will not be presented here. The one exception to the ordinary Keplerian

solution for orbital motion is the method for computing the eccentric anomaly for

values of eccentricity greater than 0.7. A Newton-Raphson method of iterat-

ing the known value of the mean anomaly to achieve the eccentric anomaly was

developed.

Referring to computational step B under Method of Approach, the

equations are as follows:

The position vector of the satellite in terms of the orbital

parameters.

l.

2.

.

inclination (i)

longitude of the ascending node (_) measured from the

vernal equinox

eccentricity (e)

SGC 920FR-I
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4. semi-major axis (a)

_. argument of perigee (_)

6. true anomaly (e)

in earth centered equatorial coordinates is given by:

where

r = x' i + y' j + z' _

a (1 - e2)
X !

i + e cos 8 cos 8 (cos W cos _ - cos i sin _ sin _)

(i)

(._)

- sin e (sin w cos _ + cos i sin _ cos w)]

1 + e cos e cos 8 (cos • sin _ + cos i cos _ sin w) (3)

+ [sin e ( _ sin _ sin _ + cos _ cos w cos i)]

z' : a (i - e2) [i + e cos 8 cos _ sin W sin i + sin 8 sin i cos m (4)

The transformation from equatorial coordinates (x' y' ', , z )to

ecliptic coordinates (x, y_ z) of equation 3 is accomplished by

X

y =

Z

-- w

_01011 sin0 -sinO 7,, I x'z,

i

cos e e I Y'

e cos e ;

where e is the angle between equatorial and ecliptic planes

(c _ 23.44_ and the x' and x axis both point to the vernal equinox.

The position vector to the satellite in ecliptic coordinates is

expressed by:

-- -2 --
r = x l+yj +z_

A unit vector in this direction can be defined as

r r r
e .- e - e -

xl y j zk
= + _ +

171 171 I_1

SGC 920FR-I
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and

u = uI i + u2 j + u3 k

where

r
e x

uI = , u2

r r

= e__A_Z u3 = e___AzIri' Irl

r = earth radius
e

_x _j2I_1: 2 + y2+ z

The unit length of the vector u is one earth radius.

The position vector from earth center to spacecraft in ecliptic

coordinates is determined in the same manner as is the position

vector of the satellite in equation (4).

(_)

The components xx, yy, and zz, of the spacecraft in term of lati- (6)

tude (8) and longitude (_) are determined by:

= : I;I cos_ cos_,

n, : I_1cos_ sin

zz: I;I sin

The line of sight vector from the satellite to the spacecraft can

now be determined by

_V : rSC - rSA

where rv = radial vector from the satellite radius vector
m

(rSA) to the spacecraft radius vector (_SC). (In subsequent analysis, the sub-

scripts e, SA and SC, will pertain to the earth, satellite, and the spacecraft

respectively.)

and

r--v= (xSA- Xsc)[ + (YsA - YSC)_ + {zSA" ZSCI _

SGC 920FR-I
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where

The corresponding unit vector is simply:

uSA =u 1Y + u2 7 + u3

----r

UlSA e Ir I

iXsA- Xsc;

YsA - YSC)
= r

u2sA e Irl

IzSA- ZSC )
= r

U3SA e Irl

and

Iri=
xSA _ Xsc) 2 + (YsA - YSC) 2

The look angle Y is now defined as

: cos _" _SA

go A final computation is required to compute the satellite cir-

cular orbit (ttSA).

HSA can be found as a function of the look angle _ by the following

expression:

r + Hion
e

HSA = cos _ -re

where r :

e

Hion =

earth radius

input altitude of disturbing ionosphere

= total look angle

Computer program inputs are listed in Sections A and B of Table

3.3.1.2-9, the outputs are listed in Section C and is the printout key for the

printed results. Figure 3.3.1.2-9 presents the orbit orientation and related

parameters of the DSMCS orbit analysis.
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TABLE 3.3.1.2-1

PLANETARY T_CTOR_ PA_TERS

Iv_SSi0N

Earth Departure Date

MER_JRY ._Tv_v.L J.J .A _t_ J.

JED-2445963.75, UCD - 20 Sept. 1984

Planet Arrival Date JED-2446078.75, UCD - 131 Jan. 1985

Transit Time 115 Days

Eccentricity .4253256

Angular travel (_) 221 ° 27' 52.62"

True anomaly -177 ° 32' 25.74"

Semi-major axis 10.5438304 x i07 km

Longitude of Earth at departure 357 ° 20' 44.42"

A Velocity Requirement from 286KM

Parking Orbit

5,308mps

SGC 920FR-I
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TABLE 3.3.1.2_2

I_LANETAHY TRAJECTORY PARameTERS

_SSION MARS

Earth Departure Date JED-2444954.75, UCD - 16 Dec. 1981

Planet Arrival Date JED-2445164.75, UCD - 14 July 1982

Transit Time 210 days

Eccentricity .22620032

Angular travel (_) 196 ° 48' 39.97"

True anomaly

Semi-major axis

-0° 31' 10.69"

1.9021347 x 108 km

Longitude of Earth at departure 84 ° 6' 20.71"

Velocity Requirement from 286 KM

Parking Orbit

3,579 mps

SGC 920FR-I
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TABLE 3.3.1.2-3

PLANETARY TRAJECTORY PARAMETERS

_SSION JUPITER FLYBY

Earth Departure Date JED-2441783.75, UCD - ii Apr. 1973

Planet Arrival Date JED-2442463.75, UCD - 20 Feb. 1975

Transit Time 680 days

Eccentricity .68980767

Angular Travel (_) 156o 41' 48.78"

True anomaly

Semi-major axis

6° 12' 14.83"

4.8211339 x lO 8 km

Longitude of Earth at departure 201 ° I0' 25.73"

_Velocity Requirement from 286 KM

Parking Orbit

6_526mps

SGC 920FR-I
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TABLE 3.3.1.2-4

PT.___$TE_.TARYTPA._TECTORYPARAMETERS

MISSION _JP!TER FLYBY

Earth Departure Date JED-2443786.75, UCD - 5 Oct. 1978

Planet Arrival Date JED-2444466.79, UCD - 15 Aug. 1980

Transit Time 680 days

Eccentricity .73890522

Angular travel (_) 156 ° 41' 38.61"

True anomaly

Semi-major axis

0° 12' 10.03"

5.J283067 x 108 km

Longitude of Emrth at departure Ii ° 34' 20.27"

Velocity Requirement from 286 KM

Parking Orbit

6,846mps

SGC 920FR-I
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TABLE 3.3.1.2-5

_T^_r_v TpA_-nE_CTORY PAPAI__,TERS

_KSSi0N JUPI _ER FLYBY

Earth Departure Date JED-2443776.75, UCD - 29 Sept. 1978

Planet Arrival Date JED-2444836.75, UCD - 20 Aug. 1981

Transit Time

Eccentricity

1060 days

.69305284

Angular travel (_) 194o 38' 3.06"

K

b

I
I

I
I

I
!

!
I

True anomaly

Semi-major axis

Longitude of Earth at departure

A Velocity Requirement from 286 I_i

Parking Orbit

SGC 920FR-I

Volume III

-14 ° 97' 91.6"

4.8187107 x lO 8 km

i° 44' 42.61"

7_011mps
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TABLE 3.3.1.2-6

IDT Al_l'_m/_lDV rrl!_A ]-_glmg_o v 1DA!OA_',rp'GI!O_
.L .i.,1_ v,_.J.i. ,_..L L.J. .J. J- _u J_J _.s.L V J. _J. _ _ _ .i. _¢ ._l...,w_l_ .l_Jj. i_

_Z[SSION VENUS FLYBY

Earth Departure Date JED-2444324.75, UCD - 26 _r. 1980

Planet Arrival Date JED-2444444.75, UCD - 24 July 1980

Transit Time 120 days

Eccentricity .17193166

Angular travel (_) 140 ° 5' 36.26"

True anomaly

Semi-major axis

-178 ° 26' 16.57"

12.73:4D429 x lO 7 km

Longitude of Earth at departure 185 ° 39' 26.93"

Velocity Requirement from 286 KM

Parking Orbit

3,783mpsl
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SYMBOL

ASCR

Table 3.3.1.2-9

INPUTS - SECTION A

DESCRIPTION

Semi-major axis of the spacecraft heliocentric orbit

UNITS

A°U.

I

I
I

!
I

I
t

I

I
i

i
i
i
I
i

ECCSC2

GLOED

GISC2

THSC2

HP - HA

OMDSIF

GIDSIF

DELT

TDAYS

HION

TDISC

ICNT

TT

SCC 5_2OFR- 1

Volume III

Eccentricity of the spacecraft heliocentric orbit

Initial longitude of the earth measured from the

vernal equinox - positive counterclockwise

Inclination of the spacecraft orbit - measured

positive upward from the ecliptic plane

Initial true anomaly of the spacecraft. Measured

positively counterclockwise from perihelion

Where HP = HA DSMCS circular orbit altitude

Initial DSMCS longitude of the ascending node

measured positively counterclockwise from the

vernal equinox in the equatorial plane

Inclination of the DSMCS orbit measured with respect

to the earth's equ&tori&l plane

Print interval - Results will be printed every DELT

steps

Total computation time. Computations will terminate
at TDAYS

Altitude of disturbing ionosphere

Time for discontinuity. A discontinuity may consist

of either a planet stay time or new spacecraft

trajectory_ or both. If TDISC = 0, Section B inputs

are not required

FLAG; If ICNT = l, the _36 values of h min. and look

angle are printed out each time point

Title card - Identification label; may use up to 72

alpha-numeric characters
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km

DEG
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Table 3.3. i.2-9 (Continued)

INPUTS - SECTION B

DESCRI PTI ON UNITS

I
I
I

t
I

!
!
I
i

I

t
t
I

I

I

TSTAY

ASC2

ECCSC2

GISC2

THSC02

ITARG

SGC 92OFR-I

Volume III

Target stay time

Semi-major axis of the inbound spacecraft trajectory

Eccentricity of the inbound spacecraft trajectory

Inclination of the inbound spacecraft trajectory

True anomaly of the inbound spacecraft trajectory

FLAG to determine the target planet; necessary only
when TSTAY _ 0

ITARG

= i, Target is the planet Mercury

= 2, Target is the planet Venus

= 3, Target is the planet Earth

= 4, Target is the planet _rs

= 5, Target is the planet Jupiter

Note: The subscript "2" refers to heliocentric coordinates
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Table 3.3. i.2-9 (Continued)

OUTPUT - SECTION C

DESCRIPTION UNITS

I

I
I

i
'i

I
!

I
I

l
I

I
I

I
I

TIME

HMIN

PSI

_N(N)

PSI (N)

THETS(N)

OMEGA

XE

YE

XP

YP

ZP

SGC 920FR-I

Volume III

Instantaneous time from launch DAYS

Minimum DSMCS orbit altitude necessary to avoid occultation km,

computed at the most unfavorable position of the orbit

Total look angle; measured from the DSMCS/spacecraft

radial vector to the DSMCS orbit plane

DEG

Minimum DSMCS orbit altitude necessary to avoid

occultation computed at the DSMCS's real time

position

km .

Total look angle computed at the DSMCS's real time

position
DEG

True anomaly of the DSMCS when HMIN(N) and THET(N) are

computed

DEG

Longitude of the ascending node of the DSMCS orbit

plane; measured from the vernal equinox

DEG

Component of the earth distance in the ecliptic plane;

positive in the direction of the vernal equinox

kml o

Component of the earth distance in the ecliptic plane;

positive direction determined by the right-hand rule;

orthogonal to X.

km o

Component of the spacecraft distance; positive direction
as in XE

km °

Component of the spacecraft distance; positive direction

as in YE
km .

Component of the spacecraft distance; normal to the XP,

YP plane

km o
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\
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!

6
SPACECRAFT

Figure 3.3. i. 2-2.

Spacecraft Occultation Zones

OCCULTED ,

___so_
_ PIANE

' !

!
!

d
SPACECRAFT

Figure 3.3.1.2-4.

Spacecraft Occultation Zones
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Figure 3.3.1.2-3.

Spacecraft Occultation Zones
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Figure 3.3.1.2-5.

Spacecraft Occultation Zones
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Where :

S - Satellite

7 Equatorial cartesian
coordinates

r - Radial distance to satellite

A - Right ascension

- Right ascension of the ascending node

- Argument of perigee

8 - True anomaly

P - Perigee

Y - Central angle measured from the ascending node

L - Instantaneous lattitude geocentric

Figure 3.3.1.2-9. DSMCS Orbit Orientation
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3.3-1.3 SELECTED ORBITS

Each of the orbits selected for the various missions are repre-

sentative from the standpoint of orbit altitude. The required representative

circular DSMCS orbit altitudes ranged from 817 to lll7 kilometers. Since the

orbits were reasonably low, and provided sufficient payload, it was decided to

eliminate elliptic DSMCS orbits and the related consideration of Apsidal

regression.

The DSMCS/spacecraft look angles are plotted versus days in orbit

after spacecraft launch for each of_the missions. The look angle is defined as

the angle that the DSMCS/spacecraft radial vector makes with the ascending node

of the DSMCS orbit. The visibility band, described in Section 3.3.1.2 is pre-

sented below for a variety of orbit altitudes.

Altitude (km) Visibility Band (deg) Total Field Width (deg)

940 71-109 39

Ii00 68-112 43

1260 66-114 49

1440 64-116 53

162o 6o-120 61

Mercur_ Flyby

The Mercury Flyby mission was the object of a more thorough

investigation than any of the other missions. This was due largely to the fact

that the Mercury mission served as a check case for the computer program.

To achieve a continuous line-of-sight between the orbiting

satellite and the spacecraft requires trajectory shaping of five

satellite orbit parameters. These are, in order of importance, longitude of

the ascending node, inclination, radius of perigee, radius of apogee, and the

SGC 920FR-I
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argument of perigee. From an examination of the Mercury spacecraft trajectory_

it is obvious that the orbit plane of the satellite must be changed at least

once during the llS-day mission to achieve line-of-sight, (i.e., the satellite

orbit plane becomes parallel to spacecraft/earth vector in approximately 90

days). This plane change may be accomplished in two ways, either by satellite

propulsive thrusting normal to the orbit plane or by allowing the node of the

orbit to precess.

From the standpoint of minimum orbit altitude, maximum payload,

and mission requirements, the latter method was chosen for this and all the

other missions. Since the precession rate of the longitude of the ascending

node is a function of both the satellite's orbital radius and orbital inclina-

tion, it is possible to determine the minimum orbital radius and resulting

inclination which gives continuous line-of-sight. The optimum conditions for

line-of-sight are obtained when the satellite orbit plane is no greater than

±90o from the spacecraft/earth radius vector, with this arrangement. The cor-

responding inclination must be such that the satellite Goes not move behind the

earth. An inclination close to 90 ° with respect to the earth's equatorial plane

will satisfy this requirement. In the case of circular satellite orbits, the

perigee radius and apogee radius are equal and the argument of perigee is undefined.

In Figure 3.3.1.3-1, the spacecraft trajectory is described in

heliocentric coordinates along with the planets Mercury and Earth as a function

of days in orbit. The satellites inclination is assumed to be constant throughout

the duration of the mission.

The orbftsdesigned on the basis of the above discussion is sum-

marized below.

Mercury Flyby (119 day transit)

Required DSMCS orbit parameter to avoid occultation:

Circular orbit altitude - 842 km

Initial longitude of ascending node (_o) 159 Deg.

Inclination - 90-5 Deg.

SGC 920FR-I
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l

i

Nodal precession rate (_) - .057 Deg/Day

Figures 3.3 i _ o _ .3 7•_'_-_ .... 3 x__ _nw +h_ t_m_ b_storv of h
mln

and look angle, respectively.

Maimed Mars Mission

The spacecraft trajectory for the manned Mars round trip mis-

sion is shown in Figure 3.3.1.3-4. Due to greater DSMCS/target planet dis-

tances in this mission compared to the Mercury case, the DSMCS orbit altitude

increased to ii16 kilometers. The required orbital parameters to avoid

occultation are:

_rs Mission (30 day stay, 4_0 day total mission duration)

Circular Orbit Altitude

Initial Longitude of Ascending

node (_o)

Inclination

Nodal Precession Rate

- 1116 km

- 68.25 Deg.

Figure 3o3.1.3-5 presents minimum orbit altitude versus time in

orbit.

JUPITER FLYBYS

The Jupiter missions consist of the three separate spacecraft

trajectories listed below.

a)

b)

o)

1973 opportunity - fast transit

1978 opportunity - fast transit

1978 opportunity - slow transit

The optimum launch date was provided for the 1973 opportunity whereas only

an approximate date for the 1978 opportunity was available. An n-body optimiz-

ing interplanetary trajectory computer program was utilized to determine the

optimum launch dates for the 1978 Jupiter opportunity. The results of this

study are presented in Figure 3.3.1.3-6.

SGC 920FR-I
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The spacecraft trajectory for the 1973 mission is shown in

Figure 3-3ol-3-7- A similar analysis for the two Jupiter missions of 1978

is presented in Figures 3.3.1.3-8 and 3.3.1.3-9. Orbital altitude plots

versus mission time are shown in Figures 3.3.1.3-10 through 3.3.1.3-12 for

the three missions.

Jupiter _ssions of 1973 and 1978

The following table gives a summary of the three Jupiter

missions.

I
I

I
I

Initial DSMCS Node

DSMCS Inclination

Nodal Precession Rate

h .
mln

1973

Fast

Transit

8.5 deg

91. i deg

•12 deg/day

933 km

1978

Fast

Transit

172 deg

91.3 deg

•15 deg/day

817 km

Venus Flyby and Return

1978

Slow

Transit

18 deg

90.9 deg

•09 deg/day

1117 km

I

I
I

I
I

I
I
I

I

Investigation of theVenus flyby indicated that three different

DSMCS nodal precession rates are required in order to avoid occultation. The

method requiring the smallest velocity increment involves changing the DSMCS

orbit inclination two times. As an example, with a DSMCS orbit altitude of

ii00 km, initial DSMCS orbit plane of 170 °, and a DSMCS inclination of 88.9 ° ,

the first inclination change would occur at i00 days after launch. The first

i00 days requires a DSMCS nodal precession rate of -.!2 deg/day. The required

plane change is 7.5 degrees to a new inclination of 96.4 degrees; velocity in-

crement for this change is .958 km/sec. This inclination will give a DSMCS-

nodal precession rate of .65 deg/day. The second plane change would be made at

260 days after launch to a new DSMCS inclination of 91.5 degrees, yielding a

precession rate of .22 deg/day. This second plane change through 4.9 degrees

requires -575 km/sec. The total velocity increment required to produce the de-

sired plane changes totals 1.533 km/sec.

Original study ground rules not allowing propulsive plane change

maneuvers eliminated the Venus round trip mission from further study. Figure

3.3.1-3-13 presents the outgoing trajectory of the Venus mission.

SGC 920FR-I
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3-3.2 ENVIRONMENTCONSIDERATIONS

3.3.2.1 RADIATIONBELTS

Satellites in polar circular orbits traverse both electron and

proton trapped radiation. The orbit-averaged flux rate densities of trapped
electrons during the solar minima of 1975 and 1985 are shownin Figure 3.3.2.1-1,

oftrapped electrons during the solar maximumof 1978 in Figure 3.3.2.1-2 and

of trapped protons valid for all years in Figure 3.3.2.1-3.

If the range of charged particles of initial energy E1 in a
shielding mediums can be expressed as

R(EI) = As Eln (la)

(where the range is expressed in gm/cm2). Then for a spectrum of particles

shielded by a thickness R, implying no penetration by particles of energy less

then E_ the dose rate behind the shield maybe approximated by

1.6 • 10 -8 i0n-I

D = n A n-i ¢ rads/day (2a)
s E

2
where energy units are Mev, and flux rate density units are particles/cm -day.

(Note: The l0 n-I factor is purely empirical to account for change in particle

energy in passing through the shield.) Over the energy range of interest, for

electrons shielded with aluminum

implying

R : o.4 E1"3 (ib)
e

6 • 10 -8 rads
D = @ --

EO.3 e day

2
where E is in Mev and @e is in electrons/cm -day.

interest, for protons shielded with aluminum

(2b)

Over the energy range of

implying

R
P

= 0.O054 E1"7

1.4 • i0-5 rads

D = Eo.7 Cp da--7-
(2c)

SGC 920FR-I

Volume III Page 60



I@
I
I

I
I

il

I

I
i
I

I
I

I
i

i
I

I
I

2

where E is in Mev and @p is in protons/cm -day. Equation 2b is approximately

valid for all materials, though multiplying it by an atom-dependent factor

(__) (_2_) will improve the accuracy• Equation 2c multiplied by an atom-

dependent±P_ factor of (_7)I/3_ will yield a rough approximation for all materials,

with the accuracy improving at higher energies. (Z is atomic n_mber. A is

atomic weight.) The true ranges of particles in aluminum are shown in Figure

3.3.2.1-4.

If the orbital range of interest is no higher than 2320 kilometers

(1250 n.mi.) and no lower than 740 kilometers (400 n.mi.) than for electrons

above i/4 Mev the 1975, 1985 (solar minimum) environment will be limiting.

(To shield out all electrons below 1/4 Mev less than .25 mm of aluminum is

required.) Using equations 2b and 2c to compare electron and proton dose rates

indicates clearly by inspection that the electron environment is the limiting

environment throughout the altitude range of interest for all shielding less

than 2700 mg/cm 2 (i cm of aluminum).

The dose rate for trapped radiation in 1975 and 1985 as a function

of shielding and of orbital altitude is shown in Figure 3.3.2.1- 5 . (A shielding

thickness of i mm, corresponding to a few tens of kilograms shielding weight,

is typical.) The dose rate for protons is also indicated, though it is smaller

than that for electrons. A modification of Equation 2b was used to calculate

shielding down to 2 6 mg/cm 2• , or 0.01 nun of aluminum. Figure 3.3.2.1-5 is be-

lieved to represent a qualitative improvement for the 1975-1985 time period

over the data previously reported.

Some conclusions may be readily drawn from the figure. For a

given shielding requirement in a 1853 kilometer (i000 n.mi.) orbit, there will

be a few additional kilograms required in going up to a 2320 kilometers (1250

n.mi.) orbit, or a 15-25 kilogram weight savings in going down to a 1485 kilo-

meter (800 n.mi.) orbit. This assumes the electron dose is limiting.

For successful satellite operation, the proton dose must be much

less than 106 mad, and the electron dose must be much less than 109 rad.

How much less may be determined by trade-offs between equipment perform-

ance and shielding requirements.
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Proton do_es from solal ........ wi ........ *_ 10 3 _o_o/ .....

and will be neglected here. Bremmstrahlung is also unimportant. Therefore

only the electron and proton trapped radiation doses will be considered.

For 1 mm of aluminum shielding (weighing a few tens of kilograms

at most) proton dose rates vary from 104 to 106 rads/year_ while electron dose

rates vary from 5 : 105 to 3 ' 107 rads/year. Because of weight considerations,

shielding of the entire satellite against protons is limited to about 2 to _ mm

of aluminum through individual components may be more thoroughly shielded. For

shielding against electrons the economic limit will be somewhat greater.

The tolerable doses of electron radiation will usually be deter-

mined by materials for which appreciable local shielding is impractical. A

dose of 107 rads in the satellite might be tolerable, but 106 rads is decidedly

preferable. A dose of 105 fads would be desirable, while 104 rads is probably

unnecessary. The rate of change of dose with altitude is negligible near 2_20

kilometers (1250 n.mi.) but is quite significant below 1485 kilometers (800 n.mi.)

Shielding on account of electron damage is relatively more difficult than for

proton damage. The optimum shielding for electrons will probably consist of a

1 to _ mm skin, while providing up to 1 cm of local shielding were required

for seals, lubricants, and other critical components.
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The trapped radiation dose rates as a function of shielding thick-

ness are given only for 1975 and 1985, the solar minima. For altitudes between

817 km (450 n.mi.) and 1117 km (600 n.mi.) the electron fluxes above 0.25 Mev

will be greater at solar minimum than at solar maximum. Greater solar activity

results in higher atmospheric densitie_ which in turn depress the trapped radia-

tion. Since even _.25 mm of aluminum, shields out all electrons below 0.25 Mev,

the trapped electron fluxes for the 1975 and 1985 solar minima constitute the

upper limit of electron dose rate. Therefore it is unnecessary in this analysis

to consider the 1978 dose rates as a function of shielding thickness. Similar

reasoning is applicable to proton dose rates. For conditions outside those of

current interest, the dose rates of Figure 3.3.2.1_5 multiplied by the ratio of

the appropriate fluxes in Figures 5.3.2.1-1 and 3.5.2.1-2 will give a reasonable

approximation to the 1978 solar maximum dose rates.

3.3.2.1.1 ALLOWABLE RADIATION DOSES

Allowable radiation dose rates for any given satellite depend upon

its most sensitive components. The type of radiation may or may not affect the

degradation. Such things as transistors and inorganic insulations are sensitive

to proton radiation but are little affected by electron radiation. Organic sub-

stances are primarily sensitive to total dose, whether from protons or electrons.

Biological substances are roughly ten times as sensitive to protons as to

electrons.

Biologically, a i00 rad electron dose (or i0 rad proton dose) will

make most animals sick (including man) but will kill almost none. (I)(2) A 1,000

rad dose will kill man and most other animals. A i0,000 rad dose will kill

virtually all animals except some bats. For bacteria the lethal dose can exceed

i000,000 rad.

(i) H. Goldstein, "Fundamental Aspects of Reactor Shielding" Chapter II, Reading,

Mass., Addison-Wesley Publishing Co. 1959.

(2) V.A. Rezontov and M.A. Lagun, "Role of State of Thyroid in Asthenic Syndrome

after Radiation Sickness," July 1963, Soviet Physics.
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Of those materials sensitive primarily to proton radiation, tran-

_+ ...... _7_ ...... 7_ _ m_+ _n_] _ _h,1]_tinn of al]owable damage threshold

(for typically 20 percent degradation in performance) doses is given below:

Table I

Proton Doses in Solid-State Devices (3)(4)

Si transistors

Ge transistors

Tunnel diodes

Allowable D_age Threshold

102 - 103 rad 104 105 rad

104 105 _ lO6

- 10 3 _ 10 6

Proton damage-thresholds for other devices are suggested in Table II below:

Table II

Proton Damage-Threshold in Various Materials

Solid-state electronic devices

Inorganic electrical insulations

Metals

Inorganic thermal insulations

103 - 106 rad

4"106 rad and up

107 rad and up

108 rad and up

For those materials sensitive to all forms of radiation, damage thresholds are

given in Table III below:

(3) L.D. Jaffe and J.B. Rittenhouse, Behavior of Materials in Space Environment,

I

I
I

JPL, TR-32-150 , Nov. i, 1961

(4) J. W. Gordon, "Radiation Effects Considerations in Materials in Cyrogenic

Systems of Nuclear Rockets, IRE Transactions on Nuclear Science, NS-9
January 1962.
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Table IIl

Seals - fluorocarbon

- most others

Thermal insulations - organic*

Electrical insulations - organic*

- organic-inorganic*

Lubricants

Adhesives

10 4 - 10 5 rad

106 _ 108

I09 - i0 I0

105 and up

lO7 - lO9

10 6 and up

lO7 - lO9

Inorganic alternatives exist (see Table II).

3.3.2.2 SOLAR PLAS_

The steady solar plasma has no direct effect on low altitude

satellites. The solar plasma does not reach into the earth's magnetosphere

(1.6 x 105 kilometers diameter), but instead transmits its energy through hydro-

magnetic waves to the ionosphere.

However, the indirect effects of the solar plasma largely govern

altitude optimization. The variations in solar energy - whether during individual

solar disturbances or through the solar cycle - are transmitted to earth by the

solar plasma. During solar maximum the atmospheric (exospheric) density is 2

orders of magnitude greater than at solar minimum, over the altitude range of

interest. The greater atmospheric density leads to a pronounced decrease in

trapped electrons (except for low energies) in the inner radiation zone, and to

a decrease in meteoroidal material orbiting the earth. The trapped electron flux

in the outer radiation zone is enhanced during solar maximum, though the effect

is outweighed by the decrease in the inner zone.

The significance of these indirect effects of the steady solar

plasma are discussed in the appropriate sections.
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The unsteady solar plasma from solar flares is another problem.

in a very bad year high ener_ r proton doscs from solar flares might possibly

equal those from the trapped radiation, but there is less than 1 chance in lO0.

Transient effects from solar flare radiation is not likely to be a problem.

The environments used in this report are based on References 1 and 2.

3.3.2.3 MICR0_TEOROID FLUX

The earth-orbiting meteoroids are an important part of the total

meteoroid population only for masses smaller than lO -5 gram. A lO -5 gram

meteoroid will penetrate 2 mm of aluminum if the impact is normal, or on the

average 1 mm if the impacts are randomly oriented. On the average, every 30

square feet of satellite surface area will be struck once per year by a l0 -5

gram particle. Decreasing the aluminum thickness to 0.1 mm will increase the

penetration rate 1,000 to 100,000 times.

If the satellite is shielded by less than 1 mm of aluminum there

will be a small increase in penetrating flux as altitude increases. This in-

crease will be a factor from 1 to l0 over a 500 km (270 n.mi.) increase in alti-

tude. If the satellite is shielded by more than 1 mm of aluminum, earth-

orbiting meteoroids may be neglected, and the penetrating meteoroid flux will

be essentially independent of altitude. Since 1 mm of aluminum shielding amounts

to only a few tens of kilogramS_ the altitude dependence of meteoroids Will Seldom

matter and can be neglected. Moreover, for the orbits of interest trapped radia-

tion, and not meteoroids, will be the hazard that determines the maximum alti-

tude and the shielding requirements.

There is a small average drag due to micrometeoroid impacts. The

average pressure is maximum near 1853 kilometers (i000 n.mi.) altitude with a

magnitude of roughly 10 -7 dyne/cm 2 (1.5 10 -12 psi). The altitude variation

is small. This micrometeoroid pressure is less than for the atmosphere until

(i) W. Jenisch, Jr., and J. B. Parkinson, "Space Environment Criteria;"

Aerojet-General Report 3147, dated January 1966. NAS 8-11285.

(2) James I. Vette, AE-2, AE-1968, and AP 1-4, Trapped Radiation Environments;

Aerospace 1965-1966 (unpublished).
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altitudes of 1480 to 2400 kilometers (800 to 1300 n.mi.), depending on the solar

cycle and orbit orientation are reached_ and it is neg_o__"-_ " - for _a_-*-_^ op-

timization work.

3.3.2.4

equation:

ATMOSPHERIC DRAG

Orbital decay rates for DSMCS orbits have been calculated from the

Ar 2_#r r
= per orbit

r-_ (W/CDA) r-R E

39_ l15P rl/2EE3/2

= (WlCDA ) r_RE per year

(i)

where consistent units are implied.

Atmospheric densities vary as a function of the solar cycle and

of the local earth time. The Harris-Priester models (NASA TND-1444) have been

adopted here, because they are believed accurate within a factor of two. The

Harris-Priester "S" as a function of the solar cycle is (range of monthly aver-

ages and yearly average).

1975 95-i15,100 1979 160-280,225 1983 100-15o,110

1976 ioo-18o,135 198o 13o-26o,18o 1984 95-iio,ioo

1977 13o-3oo,21o 1981 100-210,145 1985 95-i05,100

1978 170-300,250 1982 i00-180,125

The atmospheric densities at various altitudes averaged over

circular orbits are given in the enclosed table_ Table 3.3.2.4-1. The orbital

decay rates calculated using these densities are given in the table and in the

enclosed figure, Figure 3.3.2.4-i. Examples will illustrate their use:

Consider a 1360 kilogram satellite with a 30.5 meter diameter an-

tenna perpendicular to the velocity vector in an 800 km polar orbit. Then we

may read directly its decay rates for various years between 1974 and 1985.

1975 1.2% per year

1978 88% per year

1981 7-5% per year

1985 1.2_ per year
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For years in between interpolation is required. (1975-1985 represents exactly

one _ ...... 1 _ ) %T_-I-_ -,1.-"_-,1-- ,,1..,_ ..L'L,_ _'1........ l-_:_"aO_-- _ _ _o_o,_ _j_. ,,_ _ wJ..t_-_ 0_ u._,y is greater than ;-_up, new

values should be taken from the graphs; e.g., the 800 km orbit in 1978 would

actually last for only one or two months (one month if the orbit is in the

noon-midnight plane, and two months if in the dawn-twilight plane).

If instead the antenna is only 3.0 meters in diameter, the

figures above must be multiplied by _ or

1975 0.012% per year

1978 0.88% per year

1981 0.075% per year

1985 0.012% per year

Averaged over ll years time, the decay rate is roughly the average of the

1975, 1978, and 1981 values, or 0.3% per year.

If there were no (or a negligibly small) antenna, a 1360 kilogram

satellite might be a sphere 1.22 meters in diameter. For this case, let CD = 2.4.

Then in 1978, the decay rate would be

r-_ , ,_o.__etor_,-_- per year

[1.22_m 2.4
= 0.88 _30.5 m _ per year

= 0.0011 per year _ 0.1% per year

which for all practical purposes is a permanent orbit.
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3.3.3 EARTH ATMOSPHERE R.F. OCCULTATION

Due to the relatively low orbital altitude, a significant

deviation of the vector normal to the orbit plane from the communications line of

sight vector to the spacecraft will either cause the signal to pass through the

earth's atmosphere with possibly deleterious effects or to be completely blocked

by the earth itself. The purpose of this section is to discuss the atmospheric

constituents and how they affect a signal passing through it so that an equiva-

lent earth radius can be formulated which could be used in the orbit computations.

Also, the conclusions drawn regarding the effect of the atmosphere, particularly

at the lower elevations, may be used to demonstrate the superiority of an orbiting

station over a ground station. Among the signal characteristics studied are its

amplitude, direction, phase, and polarization. The reduction of amplitude or

attenuation translated into noise temperature will be compared against other

expected system noise temperature contributors. Signal direction, phase or path

length and polarization effects which are caused by the ionosphere will be evalu-

ated in terms of nominal system goals_ beamwidth, range accuracy and polarization.

Atmospheric constituents vary as a function of altitude.

Three spherical shells formed by this dependence will be considered, Troposphere,

Stratosphere and Ionosphere. The particles within each shell interact with the

passing wave along a nearly straight path L. The total effect of all the par-

ticles is found by integrating along the path.

L

Z = j f(_) d_ (i)
O

Since this integration will be repeated several times it seems appropriate

to examine the geometry to which it must be applied. Because of the general

altitude dependence of the atmospheric constituents_ the path length must be

related to altitude as in (2) and illustrated in Figure 3.3.3-1.

L2 = h2 + 2 R h (2)

where L is the distance from the point of interest _P)to the point of-tangcncy

(T).
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GT is the radial d_stance from T to the earth.

R is the radial distance from the center of the earth to the

point of tangency (T)"

h is the radial distance from the point of interest (P) to the

circle of tangency.

A is altitude, the distance from point of interest (P) to the earth.

Together Equations (i) and (2) will be used to compute signal characteristic

changes caused by passing into and out of the atmosphere. A 600 KM altitude

was selected to represent a realistic worst case. A lower altitude is pro-

hibitive due to atmospheric drag and a higher altitude would permit a larger

viewing angle. All path integrations will begin at this altitude. Figures

3.3.3-2 and 3.3.3-3 show path length from this altitude for various tangency

altitudes.

Attention will be confined to the frequency range between

2 and iO0 gigahertz. The upper limit is dictated by the available equipment and

the lower by the gain that can be achieved by an aperture limited system.

Troposphere

The troposphere, which is the domain of weathe_ is in con-

vective equilibrium with the sun-warmed surface of the earth. Its upper limit

ranges from 6 to 18 kilometers depending on the latitude. The higher limit is

in the equatorial regions. The average ceiling is 8 kilometers. Absorption of

electromagnetic radiation in the 2 to i00 gigahertz band has been detected for

most of the atmospheric gases including molecular oxygen, water_ ozone_ sulphur

dioxide, nitric dioxide and nitrous oxide. I The nitrogen molecule has neither

an electric nor magnetic moment. Only the oxygen molecule and the water molecule

are of sufficient density to be distinguished at tropospheric pressures. A

single water vapor absorption line exists in the frequency regime of interest.

The attenuation associated with this electric moment is described by the Van Vleck

expression. 2, 3

SGC 92OFR-I
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vH20 = 4.23 x 102

f2 [ A f(f_ 22.33)2+ (_f)2

(f + 22.33) 2 + (zxf)

(3)

Page 78

I



I@

I
I

I
I

I
!
i
i
I
I

I

I
I
I

I
I

I
I

where f is tile frequency in ...........

T is the air temperature in degrees Kelvin

Af is the half width of the line at its half power point in gigahertz

Y H20 is the attenuation in decibels per kilometer for one

gram per meter cubed water density.

The numerical coefficients in (3) are based on measurements

made at .2 and .4 kilometers at single frequency points at 35, 70, 90, 140 gigahertz

and in detail measurements between 18. and 25. and also lO0 to ll7 gigahertz. 4' 5

Equation (3) is plotted in Figure 3.3.3-4 with the appropriate line widths.

The total attenuation experienced by a wave propagating to

or from a 600 kilometer satellite and passing within O, 2, 4, 6 and 8 kilometers

of the earth's surface was computed as described in (1). A ground water density

of l0 grams per cubic meter and an exponential altitude dependence with a one

neper decrease at 2 kilometers was assumed. From the results shown in Figure

3.3.3-5 it is clear that water vapor effects are negligible for the 8 kilometer

tangency point path.

Water in particle form including fog, rain, and snow also

attenuate radio waves in the band of interest. The loss is due to scattering

and increases with increasing frequency. No effort was made to compute the

scattering loss because precipitation very rarely exists above 5 kilometers and

6
neither precipitation nor clouds exist above i0 kilometers.

A number of oxygen absorption lines occur near 60 gigahertz.

As was the case with the water line, the Van Vleck expression describes the absorp-
2

tion frequency dependence. The multiplicity of lines requires a more complex

form, however. 7

p f2_-_[K(2K+3)
w% =2.649_ £_AK+I

ODD K

+ (i+ 1,)(2_-_.)
K

8C£ 920FR-1

Volume llI

exp
- 2.069 K ,(K .+ 1,)

T

SK+

+ 2 (_ + K + l) (2K+I) ]
SK '' K (K + i') '' S Koj

(4)
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AfsK± = f_ _K±)2 + (Af)2

+

)2(f +f_+ +(af)2

Lf

sK0 : f2 + (_f)2

fK+ are the resonant line frequencies in gigahertz.

¥02 is the absorption in decibels per kilometer when the air consists of 20.94

percent oxygen by volume.

The error in the coefficient SK0 of reference 7 has been
corrected here. The numerical coefficients in (4) were determined from recent

experiments.7 Also, these experiments have shown that the line half width is

described by (5)

Af = 1.58 x 10 -3 P 760 + P (5)

The coefficient 1.58 is given as 1.9 in reference 7.

However, in the text, the outline states that Af = .6 gigahertz at sea level

and this leads to the coefficient used in (5). Furthermore, a line width of

.6 gigahertz has been used in several other references.

The attenuation coefficient was calculated for the first

26 resonant frequencies shown in Table 3.3.3-1. The"U.S. Standard Atmosphere

1962"was used as a source for the temperature and pressure profiles. The cal-

culations which were programmed on a 7040 are thought to be unique in that the

temperature dependence was computed directly. The attenuation coefficients are

shown in Figure 3.3.3-6. The total oxygen absorption computed as described in

(i) for O, i0 and 20 kilometers tangency altitude is included in Figure 3.3.3-7.

It is clear from Figure 3.3.3-7 that oxygen absorption is significant over most
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of the band even for the 20 km integration path.

Stratosphere

The stratosphere typically ranges from 8 kilometers to 80

kilometers, the thickness being greater at the poles. It is characterized by a

nearly uniform temperature and the same proportion of constituents as occurs in

the troposphere. The one exception in regard to the constituent proportions is

the absence of water vapors. Atomic oxygen density becomes comparable to the

molecular oxygen density at the top of the stratosphere.

The pressure and therefore the density of the constituents

is, of course, much lower than in the troposphere. The lower pressure decreases

the oxygen line widths as indicated in (5). The attenuation coefficient compu-

tation of (4) was programmed in five megahertz steps between 50 and 70 gigahertz

in order that the fine line structures could be seen. Figure 3.3.3-8 shows the

resultant attenuation coefficients up to 40 kilometers. It is clear that by

moving a system operating frequency into and out of a null, system characteristics

could be modified. For example_ a system could operate in a null thereby reducing

atmospheric blockage to a minimum while maintaining virtually perfect immunity

to jamming of DSMCS or inadvertent reception of the spacecraft signal by an earth

station.

Ionosphere

Beginning at approximately iO0 kilometers and extending up

to as high as iOO0 kilometers is the region known as the ionosphere. Although

the electron density is below one electron per iOOO molecules, the effect on a

propagating radio wave is significant, particularly below one gigahertz. Tem-

poral and spatial variations of ion density are the rule rather than the excep-

tion. However, sufficient data has been taken so that average electron density

profiles for day and night can be effectively used to study radio wave behavior.

With these profiles, the effect of the ionosphere on the amplitude, direction of

propagation, phase and polarization will be examined in this section.

The effect of the ionosphere on a passing wave is measured by

the medium's refractive index. The Appelton equation describes the refractive

index of the ionosphere where the operating frequency is much greater than the

penetration frequency. Equation 6 is the Appleton expression in conventional

notation. 9
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where

and

_T : _I_

YT, : %/_

X

%

%

%

i_ = 1 -

_

X

__ I_xl_

= _-I sin e

_- -Ne2]
_m|

- 0 -,_

= _ cos
He

= _o _- gyro frequency

(6)

is the angular frequency in radians per second.

@ is the angle between the wave normal and the earth's magnetic field.

N is the number density of free electrons in electrons per cubic meter

H is the earth's magnetic field in ampere turns per meter

is the real part of the refractive index in henrys per meter

bo = 1.257 x 10 -6 henry/meter

¢o = 8.85 x 10 -12 farads/meter

m = 9.1 x 10 -31 kilogram

e = 1.6 x 10 -19 coulombs

4

If YT-x)2_I 4 2( Ys (7)

the wave is classed as quasi-transverse and if

4

Y_-----<< 4 2
(l-X)2 YT,

(8)

the wave is quasi longitudinal.
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At 2 gigahertz per second X is very small and therefore the breakpoint is where

2
4 YL

---_--- = i
Ym

"I'

substituting

tO

YL = (_) cos Q

tO

YT : (_) sin

2w

sin @itan @I:_H

The gyro angular frequency is near I x 107 radians per second and thus at an

operating angular frequency of 12.56 x 109 radians per second (2.0 gigahertz)

sin @i tan @i _ 2500

_l : 89o 58.5'

Hence, quasi-longitudinal conditions will exist except when the magnetic fields

areexactly transverse to the direction of propagation. For the condition spe-

cified by (8), (6) reduces to

2 X

_1 - 1 + YL (9)

The positive and negative signs here represent the ordinary and extraordinary

waves respectively. The magnetic field increases the refractive index of the

ordinary wave and reduces it for the extraordinary wave relative to that for

the same electron density in the absence of the magnetic field.

For tOH near 107 at 2 gigahertz operating frequency_ YL and X are

much less than one and therefore (9) reduces to (i0)

i
_ i - IX (i + YL) (io)

By ignoring temporarily wave splitting, (i0) reduces further to (ii)

i
_-- 1 - _X (ii)

Let A_ sl= -
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2
w 2

N Ne
and since X = _ =

w2 2
_'omW

(12)

where

A_ =b N-_ (13)
tO

b = 1.6 x 103 (Meter)3

(Sec)2

With the approximate expressions derived, the effects of the ionosphere on a

propagating wave can now be simply determined. The computations will be carried

out at 2.0 gigahertz, since it is the most sensitive frequency in the band of

interest. Also, the theoretical frequency dependence will be given for each

effect.

Path Length

The phase path length through the ionosphere will increase. Equa-

tion (14) describes the path length for any wave.

L

P -- # _ d_ (14)
0

The angle cosine between the wave normal and the Poynting vector is assumed to

be one. The path length change due to the ionosphere is computed with (15).

L L

AP=f _d£= b _0--# _ d_ (15)
0 w

Consistent with earlier integrations, the path length change was

computed from a 600 kilometer orbital height through the total ionosphere.

Figure 3.3.3-9 shows the ionosphere idealized model. 6' i0 Although the step

model appears to be a crude approximation, the integration of (15) is across

layers and thus the effect of the idealization is reduced. Integrations were

made at several different tangency elevations so that the continuous plot of

Figure 3.3.3-10 could be constructed. The results shown in Figure 3.3.3-10 are

easily translated to other frequencies by the inverse squared relation included

in (15).

Wedge Refraction

In addition to vertical gradients, horizontal gradients have been
ii

observed in ionosphere studies. Anomalous refraction caused by these
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gradients is particularly important_ since the DSMCS wave will be striking such

gradients at a low incidence angle and also the beamwidth may be veiny narrow.

The wave front deviation due to a horizontal gradient can be computed with (16).

F
dAP b d]Nd_

= d s w2 d s (16)

where s is a dimension transverse to the w_ve front normal.

Radio astronomy research at near zenith angles has shown that a

gradient of one percent per ten horizontal kilometers with a 5 degree slope is
12

typical. At grazing incidence the gradient is increased by Sec @ or 11.5.

Hence, at 2.0 gigahertz and a 1017 electrons per meter 2 column

b
T = -- ii.5 x 10 -5 x 1017

2

T = 3.0 x 10 -5 radians

or 1.7 x 10 -3 deg.

Scintillation

In addition to the systematic variations in the refraction index

as those causing wedge refractions_ there are also many irregular variations

which distort and scatter a passing wave at random. The temporal and spatial

variations of the refractive index cause the apparent positions and magnitude

of a source seen through them to fluctuate. Speculations still exist regarding

what is the best cause model for this phenomenon. 13 However, sufficient em-

pirical data have been collected to reveal relative magnitudes and frequency

dependence. 14' 15 Amplitude variations are commonly described by the amplitude

P - P
max min

S = p + p (17)
max rain

index S :

Records show that at 30 gigahertz the index is generally near

unity and it is proportional to the fourth power of wavelength and the cube of

the distance. Thus the amplitude fluctuation is negligible at 2.0 gigahertz.

Similarly, the angle of arrival fluctuation is a few minutes of an arc at about

30 gigahertz decreasing to negligible levels at 2.0 gigahertz.

Group Path Delay

SGC 920FR-I
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spectrum generated by data modulated on the carrier will be retarded or advanced

relative to free space transmission. The group path through Lhe io._:osphe_.e is

given in (18).

L

d ,(_ _) d _.
where _G = d _ : _ -i-w _-_

PG d.___3thus = P + w d

Using the approximations of (ii)

i

_G =_

therefore

A_ G

L

0

L

0

(19)

where A ZG is the group path delay

A _ is the phase path delay.

Thus the time error 2_Tis positive

where

A _G
LT =

c

c = 3.0 x 10 8 meter/second.

(20)

Figure 3.3.3-10 shows this delay for the conditions assumed earlier in computing

the phase path difference.

Polarization

The affect of the magnetic field is assumed to be very small in

the signal parameter computations considered so far. It is a necessary con-

sideration in analyzing polarization ratios, since the wave splitting into

ordinary and extraordinary components is a result of it. A linearly polarized

wave passing through the ionosphere can be represented by two oppositely

rotating circularly polarized vectors. The rotations of the resultant wave,

dQ_ could, by the differing propagation speeds for the two component rotations

d K+ and d K_ over a path length Lbe given by

SCC 920FR-I
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and

where k
+

dO=
dK+-dK_

2

2w

d K A 2-/I- dL
- -- A.

and k_ represent the ordinary and extraordinary wave lengths.

(! i ) d_
Hence dQ = I_ A+ _:__

Since ;.,= _+ A+ = __ k_

and an : E (% _ _) d_
2_. . --

From (i0)

X X YL
--_ i - - +

2 - 2

and
X YL

_+ - _i -- 2

dQ=
• _XY L d_

2

In rotationalized units

(21)

Ne 2 _ He cos Qo
XYL = 2 m_o

6 In W
0

The nomenclature is given in equation (6)

D

Rearranging d Q= -_ NH cos Q d_
00

e3 _o (meter) 3

D A 2 = 1"15= sec coulomb
2c e m

O

(22)

Integrating IJ

0- D _O
2 NH cos @ d2, (23)

W

to be consistent with the pessimistic bias of earlier computations the H cos Q

will be estimated from the horizontal field at the magnetic equator and Q
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will be assumed to be zero.

whole ionosphere

H cos 9 = 34.

16
A more detailed analysis

Also, the field will be assumed constant over the

amp turns

meter

of this value showed a 45 ampere iturnsper meter maximum.

Integrating (23) over the same paths as the phase path length,

computations show that at 2 gigahertz the maximum rotations would be one radian

for a daytime profile and 3 radians for the nighttime case.

Absorption

The collision of electrons oscillating under the influence of the

propagating wave with neutral and other ionized particles attenuate the wave.

The absorption coefficient can be taken directly from the complete Appelton

express ion. 9

2
e 1 N v

,--- (24)
K = 2too co _" ',,2 + ( _+ _L)2

!

where is the frequency of collision of free electrons with heavy particles.

assuming

This is further simplified at the frequency range of interest by

>> ,
co +w %)

L

>> wL

2 !

e N_
Hence K

2 mc c 2 (25)
O oJ

and the total attenuation is computed with (26)

L L

2 /
_0 e i 'A = K d_ = 2mc c o w 0

-_ N _ d_

Detailed integrations were not carried out over the probable DSMCS ray paths

because of the low loss levels experienced in the VHF band coupled with the

inverse frequency squared dependence. Experiments have demonstrated this

dependence. The absorptions for a zenith Path near lO0 megahertz have been
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measured near 10 -4 decibels in the temperate zone. This level will fluctuate an

order of magnitude in either direction du_ tu _-_r.....................-muuc_ lu_u_p_i_.ic u±stur-

barites. These disturbances primarily effect the loss in the D region below 90

ki lome ters.

Refractions

The analysis of the normal refractions of the ionosphere have been

put at the end of this section because it does not involve the simple integrations

of (i). Figure 3.3.3-11 shows an exaggerated view of a wave passing through the

ionosphere. The computation of the refraction through the ionosphere is a labor-

ious task. By applying a previous analysis the job has been substantially

reduced. 17 The systematic refraction of a wave generated at the earth's surface

passing through the ionosphere is given by Figure 3.3.3-12 assuming the profile

of Figure 3.3.3-9. The wave is assumed tangent to the earth at the launch point.

Figure 3.3.3-11 shows that the refraction effects of a wave launched in or above

the ionosphere, passing through the ionosphere, grazing the earth, and back out

are compensating. The daytime refractions of Figure 3.3.3-12 represents a worst

case where the day-night line is directly above the earth tangency point. The

analysis from which these data were taken were only traced out to 500 kilometers.

However, the additional refractions at 600 kilometers is not considered large.
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_umma_

The effect of the earth's atmosphere on a signal transmitted

between a near earth satellite and a deep space vehicle has been reviewed

for the frequency range between 2.0 and i00. gigahertz. Efforts were made

to keep the range of study parameters considered sufficiently general so that

almost any system that might be proposed for DSMCS could be analyzed_ but

limited in scope to the probable geometry and system variables so as to re-

duce the unnecessary labor. With one exception_ the signal characteristic

computations were made over paths terminating at a DSMCS station in a 600

kilometer circular orbit. This altitude was assumed because the atmospheric

drag is prohibitive below this level.

The atmospheric constituent profiles used in the water vapor

and oxygen computations are average for most of the earth's surface. The

fluctuations in the results due to the variations in constituent concentra-

tion is expected to be less than two. From Figure 3.3.3-5 for attenuation

of the radio wave or the increase in noise temperature due to water vapor

is small compared to a system noise temperature of lO degrees Kelvin for a

wave passing 8 kilometers or higher above the earth. Figure 3.3.3-7 shows

that the oxygen noise temperature contributions does not reduce to lO degrees

Kelvin until an altitude of 30 kilometers is reached. This does not include

the regions of 60 gigahertz plus or minus six gigahertz. In the absorption

region the loss effects can be controlled by changing the frequency as

suggested by the absorption coefficient fine structure shown in Figure 3.3.3-8.
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The effect of the ionosphere on a propagating Wave was calculated

with the two profiles shown in Figure 3.3.3-9. The electron density shown is

typical of temperate zone latitudes. Variation of an order of magnitude above

and below the indicated densities occur with time and location. F_om the

expressions derived it can thus be concluded that the results of the ionospheric

computations are accurate only to an order of magnitude.

Phase path decrease and group path delay increase is shown in

Figure 3.3.3-10 for 2.0 gigahertz and the frequency dependence in (15) and

(20). Both effects are small as is also scintillation and absorption at

2.0 gigahertz. The frequency dependence is also inverse. Wedge refractions

and spherical refraction for the same frequency is also probably negligible

at 4.0 x 10 -3 degrees. The computed rotation of a linear polarized wave was

1.0 radian for the daytime profile and .3 for the nightime. Thus a circularly

polarized antenna might be necessary at the bottom of the band.

To summarize the system implications of the findings, it can

be stated that the effective earth radius is about 30 kilometers greater than

the true radius for water vapor and oxygen absorption except for the 53 to

66 gigahertz band. In this band, the occultation altitude is between 60 and

i00 kilometers. The specific height is largely judgement as to how narrow

the line may become before they are not considered a nuisance. The order of

magnitude accuracy ionospheric results indicate that the ionosphere will not

significantly change the amplitude, direction or phase length and that cir-

cular polarization is preferred below about i0 gigahertz.
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Table 3.3.3-1

MICROWAVE LINE FREQUENCIES (IN GHz ) OF 02

The first 26 resonant frequencies_ as calculated by Mizushima and

vl+ = 56.265

v3 + = 58. 447

v5 + = 59. 591

v7 + = 60.435

v9 + = 61. 151

vll+ = 61. 800

v13+ = 62.411

v15+ = 62.998

v17+ = 63. 568

19+ = 64. 127

v21+ = 64.678

v23 + : 65. 223

v25 + = 65. 770

vl- : ll8.75

v3- = 62.486

v5- = 60.305

v7- : 59. 164

v9- = 58.323

vll- = 57.612

v13- = 56.968

v15- = 56.364

v17- : 55.784

_19- : 55.222

v21 - 54.673

v23- = 54. 132

25- = 53. 599
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4.0 SATELLITE DISCIPLINE PARAMETRIC REQUIREMENTS AND DESIGN INTERFACE

CONSIDERATIONS

4.1 COMMUNICATIONS

4.1.1 SATELLITE RECEIVER

System sensitivity is described by the system noise temperature

which includes background noise, side lobe noise, coupling loss noise and

receiver noise. The magnitude of the receiver noise contribution for a DSMCS

is reviewed here along with estimates of the size and weight of the various

receiver types. Direct detectors show some promise for broadband applications

such as radio astronomy in the i0 to i00 gigahertz band but are not comparable

to either the parameteric amplifier or the maser amplifier followed by a

detector in terms of noise temperature. These detectors which include crystal

receivers and bolometers of the cooled and uncooled variety perform well in

radio astronomy applications because their relatively high noise temperature

is compensated by their broad radio frequency bandwidth and their simplicity

of operation. Similarly_ tunnel diodes and traveling wave tube amplifiers

exhibit low differential temperature sensitivity but their effective noise

temperatures are much greater than either the parametric or the maser amplifier.

Besides a low noise temperature requirement, DSMCS receivers must

be capable of remote operation thus demanding a relatively simple system of high

reliability. A low noise pre-detection amplifier must provide at least 30

decibels gain so that succeeding stages do not add appreciably to receiver noise.

Of the two candidate DSMCS low noise amplifiers, the parametric am-

plifier is in wider use because it is a small and relatively inexpensive piece

of hardware and more significantly, it can be operated at room temperatures.

Figure 4.1.1-1 includes the receiver noise temperature of some of the operational

parametric amplifiers at 300 ° Kelvin and a few below that. The cooled parametric

amplifier symbols are underlined. The symbols used are referenced to the source

of information at the end of the bibliography. Also shown in the figure is the

parametric amplifier theoretical minimum noise temperature at 300 ° Kelvin, 77 °

Kelvin and 4 ° Kelvin (1) . The theoretical noise temperature calculations were

based on assumed dynamic quality factors of 20, 16, 12, 8, and 6 at l_ 2, 4, 6,

8 gigahertz and were then extrapolated above lO gigahertz. 1 The operational noise

temperatures shown include the plumbing loss to the parametric amplifier and the

SGC 920FR-I
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calibration hardware loss. With a few exceptions_ parametric amplifiers have

generally been designed to operate in the region below i0 gigahertz. This can

be _ _ _-_r_b_d to the _ndesired reactances in the diode as we_ as those in the

parametric amplifier structure above i0 gigahertz. Diode dynamic quality factors

in this range have been improving steadily. Development in this direction is

evidenced by the annular GaAs varactor which is expected to provide a 300°K

noise temperature amplifier at room temperature. Further_ only recently tech-

niques have been implemented which use pump frequencies below the signal

frequencies. (2' 3 )

From the curves shown in Figure 4.1.1-1, it is clear that cooling is

mandatory for DSMCS applications above 4 gigahertz if an environment limited system

is to be achieved with available diodes. Parametric amplifier specialists indicate

that with comparable cooling, the parametric amplifier will out-perform the maser (4).

An operational 50 gigahertz cooled parametric amplifier appears quite probable

within a few years (5). The future improvements in the parametric amplifier diodes

and structures is not as clear above 20 gigahertz that it can be predicted with

confidence that an environmental limited system is possible. Below this frequency_

however, 20 ° Kelvin noise temperatures are quite probable. A parametric amplifier

at the low noise temperatures would be preferred to a maser amplifier. The para-

metric amplifier _oes not require high magnetic fields as the maser, it can be tuned,

with some difficulty, and is much less susceptible to saturation (4). In addition,

the parametric amplifier noise temperature is not as sensitive to the bath thermo-

metric temperature. Maser gain decreases rapidly as the maser material thermometric

temperature increases above 4.2 ° Kelvin (6) . Parametric amplifier liabilities in-

clude a strong sensitivity to pump source and circuit variations. Methods are being

developed to stabilize this variation so that these amplifiers may be used in

radiometry where gain stability is critical. (4)

Unlike the parametric amplifier, the maser amplifier cannot operate

at 300 ° Kelvin ambient but must be immersed in cryogenic liquids. The particular

thermometric temperature at which adequate gain is achieved is dependent on the

magnetic field, host material, doping concentration, and pump frequency. In

general, present masers are immersed in fluids 4.2 ° Kelvin or colder as was the
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case for all the masers noted in Figure 4.1.1-1. The high density of maser ampli-

fiers below l0 gigahertz can be attributed to the fact that the host material until

recently was ruby with a zero-field splitting frequency of ll.4 gigahertz.

Materials research is continuing in the search for host materials in which maser

amplification can be achieved at higher frequencies and with reasonable magnetic

field requirements. A notable result of this research is represented by the symbol

M8 on the plot. The system has already been packaged for operational use. The

results of this maser program demonstrate two points. First, following the dis-

covery of a host material with the appropriate characteristics for high frequency

operations, the maser and peripheral apparatus necessary for a successful operation

are substantially the same in content, size, and weight as that of lower frequency

systems. Secondly, pump frequencies near the channel frequency are practical since

this maser was operated at 40 gigahertz with a 43 gigahertz pump. With respect to

DSMCS applications, the fixed equipment character, size and weight provides a

conservative estimate for future higher frequency maser systems. The low pump to

signal frequency ratio indicates that higher frequency systems can be developed in

the near future with present pump power levels. This low ratio was not possible

in the ruby host because of cross-relaxation effects. Maser oscillation has been

achieved at 96 gigahertz with only a 65 gigahertz pump(7). This effort, when

published, was far from producing an operational device.

The weight and size of all the existing maser amplifier systems is

relatively independent of the signal frequency for comparable operation. Closed

cycle systems are usually separated into two groups. The maser amplifier, Dewar,

magnet and initial detector are located in a compact package at the focus of the

antenna to minimize receiver noise temperature. The cryogenic compressor and

high level electronics are at a more convenient location near the antenna. The

focus package for operational ground based systems weighs 180 kilograms to 300

kilograms (300 to 500 lbs) and occupies .09 to .17 cubic meters (3 to 5 cubic feet).

The compressor for these systems constitutes most of the weight of the ground

group, from 420 to 480 kilograms (700 to 800 lbs). The most significant parameter

of note is the power consumption of the present cryogenic refrigerators; 3.4 to 6
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kilowatts are required to extract a continuous heat load of i watt of 4.2 ° Kelvin.

A survey of state-of-the-art rei'rigerators reviewed in Section 4.4.3 indicates t_a_

for space application systems, specific powers of i000 (_tts power input over cool-

ing power at 4.2°K) and specific weights of 22.6 (kilograms weight over watts cool-

ing at 4.2°K). An accurate measure of the reliability of these developmental units

is not available yet. Steady-state heat loads run near.5 watts for ground based

systems. A DSMCS low noise amplifier heat load is difficult to predict because

there is no comparable space system. The reduction in convective loss insulation

will be offset by an increase in radiation. An alternative to a refrigeration

system would be simply a large Dewar filled with cryogenic fluid which would have

to be replenished periodically. In order to provide a half watt steady-state at

4.2 ° Kelvin for one year, i, i00 kilograms (2500 ibs) of liquid helium must be

vaporized. The low density of liquid helium causes the required volume to be i0

cubic meters or a cube 2.16 meters (7.6 feet) on each side. Although a comparison

of the closed loop to the open loop system seems to be strongly in favor of the

closed_ the additional weight costs to power the closed loop system dissolve

this advantage at certain altitudes. This will be discussed in the final system

tradeoff section.

Research in super conducting magnets is expected to soon provide

operational_ very high magnetic fields within small volumes. The obvious marriage

of super conducting magnetics and maser amplifiers in cryogenic fluids is inevi-

table. The higher field requirements of masers that will be built above 35 giga-

hertz can be achieved with the magnets using much less space and weight.

RESUME

A review of the detection and predetection amplifiers in the two to

one hundred gigahertz region clearly indicates that either a parametric amplifier

or a maser amplifier followed by appropriate detection willoutperform any other

methods for a DSMCS. Below i0 gigahertz a 300 ° Kelvin ambient parametric ampli-

fier noise temperature is low in comparison to other uncooled devices in that

region, but it is much too high for DSMCS application_ as can be seen in Figure
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4.1.1-1. In order to reduce receiver noise temperature to the l0 to 20 ° Kelvin

region where a system would be environment limited rather than receiver limited_

liquid helium temperature baths are necessary. A nominal one-half watt heat load

for a one-year mission can be satisfied by either a closed cycle refrigerator or

a refillable Dewar. The weight of the clo_@&_¢le refrigerator is much less

than the Dewar; however, the weight necessary to provide energy to operate the

refrigerator is considerable. The two approaches will be compared in the final

system tradeoff section where the energy source weight is considered.

Environment limited DSMCS cooled amplifiers either parametric or

maser will undoubtedly be available _efore ten years pass. This is clear if it

is remembered that the first maser amplification occurred only ten years ago [8" ).

Also the foundations of parametric amplification were made in that time ( 9 ). The

20 ° Kelvin, 35 gigahertz system noted as M8 of Figure 4.1.1-1 is indicative of

the rapid pace of low noise receiver technology. The noise temperature of low

noise amplifier systems within the amplifier assembly will undoubtedly be below

20°K up through lO0 gigahertz. The remaining receiver noise will be engendered

by losses in the apparatus connecting the amplifier to the antenna. These may

be reduced by careful design and further cooling of the transmission line.
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_.I.2 SATELLITE TRANSMITTER

A survey of the devices available to generate radio-frequency

power in the 2 to i00 gigahertz band revealed a large combination of candidate

exciters and amplifiers with characteristics of varying applicability to DSMCS.

For expediency_ the survey does not specifically indica_ the references in the

open literature_ the manufacturer's specification sheets_ and the private com-

mumications upon which it is based.

The average output power was assumed to be of primary

importance. Consideration of the prospective rf power generators is divided

into two groups, those below i0 gigahertz and those above. This dichotomy

is basically historical in that the depth of effort in rf power design below

i0 gigahertz far exceeds that above, due to the long use of this band within

the atmospheric window. The survey is further divided into low and high

power sections_ because of the power limitations of certain power generation

mechanisms but also because of the need for an alternate receive only DSMCS.

The low power review will be of value in assessing the high-frequency spacecraft

transmitter feasibility also. Following a review of each candidate device

characteristic and peripheral equipment_ selection for each band will be made

on the basis of the DSMCS requirements.

Below i0 Gigahertz

Three vacuum tube amplifiers generate power at one watt

or greater with reasonable efficiencies below i0 gigahertz, the klystron, the

amplitron_ and the TWT (traveling wave tube). Variations on these devices, in

addition to other devices, could fulfill the exciter requirement. The exciter

is not important here since it can be small compared to the amplifier and would

be mated to the amplifier so that no significant addition in equipment is

necessary. Also worthy of consideration is a solid-state multiplier chain.

In this case the exciter would be significant both in size and weight.

The klystron amplifier is the oldest of the vacuum tube

amplifiers reviewed. As in all the amplifiers considered, the gain should be

30 decibels or greater, and the reliability should be approximately 20_000 hours

or greater for DSMCS consideration. The large MTBF is mandatory in order that

the total system including the refrigerator with a present 9000 hours MTBF
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approach one year. The average power handling capability of the operational

klystron is approaching one megawatt. Its power limit has not been approached

because in this linear beam amplifier only rf currents flow in the rf structure.

The large power dissipation occurs at the collector which can be removed from

the rf structure. Overall efficiency runs from 20 to 60 percent_ the high

values being at i kilowatt or greater. Collector depression also enhances

efficiency. Simple klystrons provide .i to .3 percent bandwidth. This is not

too serious a constraint for most deep space channel rates. Because of their

long development_ klystrons have been designed to operate up to 15_000 hours.

The frequency stability and phase linearity of the klystron are excellent.

The primary asset of the amplitron is its high efficiency.

This is attributable to the direct conversion of potential energy to rf energy

without the conversion to kinetic energy as in linear beam devices such as the

klystron and the TWT. The amplitron is essentially a magnetron where the elec-

tron stream interacts with a backward wave non re-entrant rf structure and which

includes an input port for control of the wave. The total efficiency normally

runs between 40 and 55 percent_ but can exceed 80 percent in a single high

power (3 megawatt peak) tube. Amplitron continuous power levels are approach-

ing i megawatt and thus power capability does not constitute a limit here.

The gain at these levels_ however_ are near i0 decibels and therefore the over-

all efficiency with cascaded amplifiers is approaching that of a klystron. The

amplitron is relatively new and therefore is relatively complex in operation.

Heater power must be programmed during the warm-up cycle and some external logic

is necessary to recycle the tube if input power is lost. The tube bandwidth

normally runs i0 percent of the carrier. With present tubes_ the gain does not

meet the 30 decibel criteria because of the inherent instability of a bi-

directional amplifier. However_ these devices are approaching 20 decibels gain

and an additional i0 decibels appears quite reasonable in the near future. A

key specification of concern with the amplitron is reliability. Insufficient

data exists to accurately estimate the life from the tubes recently put into

service. Raytheon predicts i0_000 hour MTBF total transmitter reliability

based on RADC parts failure rate and actual component part stress. A rough

approximation of the reliability can be made from the experience with the

similar magnetron. The magnetron at best runs approximately 5_000 hours MTBF
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and therefore some doubt exists as to the reliability of the amplitron for DSMCS

application.

TWT amplifiers fall between the klystron and the amplitron

in terms of engineering experience with the device. Average power limits of 30

kilowatts are more than adequate for DSMCS application. The efficiency of the

TWT is generally lower than the klystron and the amplitron, from 15 to 40 per-

cent overall with the higher efficiencies occurring at higher powers. The

bandwidth runs I0 to 50 percent and thus is worthy of no further consideration.

The stability and support equipment specifications of the TWT also fall between

the klystron and amplitron requirements. The stability difficulties of the TWT

are steadily being reduced. The phase linearity per gain increment is comparable

to the klystron. TWT reliability is undoubtedly the best in the vacuum tube

amplifier class; 30,000 hours have been demonstrated and 80,000 hours have been

predicted for low power tubes.

Solid-state power generation can be accomplished by straight

amplification up to approximately 2 gigahertz and by mixing methods to higher fre-

quencies. Transistor technology permits efficient amplification in the I00 to 500

megahertz range for low power levels and steadily decreasing efficiency at higher

powers. Appreciable power can be achieved by mixing methods in the i to i0 giga-

hertz range. Through a combination of doublers and triplers, up to i0 watts of

power is expected. The optimum mixing levels for efficient doubling or tripling,

or whatever harmonic is desired_ is a function of the drive level. By selection

of the appropriate varactor, an efficiency versus frequency may be achieved as

shown in Figure 4.1.2-1. A .01 watt 350 megahertz exciter level with 18 watts

drive into the mixer chain was assumed for the figure. When a solid-state

transmitter must be modulated, the up converter at the final stage may be used

to place the information on the carrier. Bandwidth of .i to .2 percent are

generally achieved with an up converter: although an order of magnitude increase

in bandwidth can be achieved at the expense of some decrease in efficiency. The

reliability of semiconductor circuitry is exceptionally good. MTBF of 30,000

hours are very probable for DSMCS if sufficient shielding is provided to preclude

radiation deterioration.
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Low Power

The selection of the best low level power source for DSMCS

is contingent on many of the parameters already mentioned in addition to the

physical parameters not considered yet_ such as weight_ temperature_ and

sensitivity to g loading at liftoff. The significance of the transmitter weight

for the DSMCS must be examined in relation to the total satellite weight. Total sat-

ellite weight ranges from 3,000 kg (6600#) to 7000 kg (15,400_). A 1.0 kilo-

watt transmitter would weigh only 25 kg (55#) plus heat dissipation apparatus.

Thus_ transmitter weight is a small fraction of the total. Further_ since the

primary function of the DSMCS is reception_ there is no significant

weight with which the transmitter weight may be traded. At low power levels

any of the vacuum tube amplifiers or solid-state sources could satisfy DSMCS

electrical performance criteria. The TWT_ klystron and solid-state amplifiers

of the present technology level exhibit reliability levels sufficient for DSMCS

application. At low powers_ however_ the TWT exhibits a clearly better reliability

than the klystron. Present solid-state transmitters are generally below i0 watts

at 2 gigahertz and steadily decrease to approximately i watt at i0 gigahertz. A

comparatively high sensitivity to temperature excursions could increase the com-

plexity of solid-state thermal design but not preclude its use in the DSMCS.

Although both the solid-state varactor chain and the TWT are non-linear devices_

the solid-state amplifier output harmonic content is a much stronger function of

drive level than the TWT. In addition_ the TWT is less susceptible to radiation

existing at DSMCS altitudes than the solid-state devices for the same level of

shielding. Considering the present need of DSMCS_ it appears that a solid-state

varactor chain with a final stage up converter is most suitable up to about 5

watts and a TWT amplifier through i00 watts. The general preference for the TWT

is verified by the success of the Hughes Aircraft TWT's on Mariner IV_ EARLYBIRD,

and SYNCOM II and llI.

High Power

Above i00 watts the TWT and the klystron are the only

amplifiers with reliability necessary for DSMCS. At this level the klystron

verified reliability generally exceeds the TWT. Most of the ultra reliable

TWT systems fall below 50 watts. Klystrons have demoastrated MTBF of 5000 hours

and in some tubes have exceeded 15_000 hours above i00 watts° Above i00 watts
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bhe ---_ ....w_±_n_ of _^_i_source _ pn%T_.............which r_ms from .5 to i kg per electrical watt

far exceeds the transmitter weight where 5 watts out per kg is typical for

ground systems. The klystron is generally simpler to operate and can generate a

wide range of output levels in contrast to the TWT. Thus, the klystron amplifier

appears to be most suitable for a high-powered DSMCS transmitter, although more

operating experience at high power with the TWT may show its reliability to be

comparable to the klystron.

Above i0 Gigahertz

In the interim region between i0 gigahertz and the milli-

meter band (30 gigahertz to 300 gigahertz) rf exciter and amplifiers differ very

little from those below i0 gigahertz. The number of devices in this region is

comparatively low because the water absorption line generally reduces the system

advantages that might be achieved by raising system frequency for ground-to-

ground systems. In this interim region, the designs are generally scaled-down

versions of below iO gigahertz devices. As a design scales down the mechanical

tolerances and heat dissipation capacity of the elements diminish. At

approximately 30 gigahertz> the tolerances and maximum power capacity are

reduced to the point that the usual manufacturing and design methods cannot be

utilized. It is this region above 30 gigahertz that this section is devoted.

In this region_ high power is considered to be that above i0 watts rather than

iOO watts and will be used accordingly.

Low Power

There are numerous methods of generating milliwatt rf power

levels at 30 gigahertz. These include diode mixers, tunnel diode amplifiers,

maser_ oscillators; and Cerenkov radiators. Each of these devices are limited

for the foreseeable future to less than one watt. Between one watt and ten

watts; the rf power is derived from klystron and TWT amplifiers and O-type BWO

(Backward Wave Oscillator). These designs are modifications of lower frequency

devices in order that reasonable power outputs can be achieved. The heat

generating collectors on these devices can be relatively easily moved away

from the rf structure. The intimate relation of the dc and rf fields in the

crossed field device precludes moving the heat generating anode from the confined

interaction area. The traveling wave tube helix has caused some difficulty in
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the millimeter range but has been replaced by stronger structures intended to slow

the wave down. All the linear beam devices, klystron, TWT and BWO (a single port

TWT) are fairly new to this frequency range and so little has been established

regarding reliability. Their characteristics are about the same as their low-

frequency coumterparts_ with the exception of generally lower efficiency.

Traveling wave tube designers have predicted that reliability in this range

will be as good as the low power below i0 gigahertz devices within a few years.

Any of the linear beam devices are adequate for DSMCS application if a reasonable

reliability can be achieved.

High Power

Above i0 watts; tube design is experimental or at best,

developmental. Liquid cooled fixed frequency klystrons have been recently

introduced on the market in the i0 to i00 watt range. Above i00 watts_ two

experimental developments show promise for large powers in the near future.

Hughes Research Laboratory has developed a traveling wave tube using coupled cav-

ity slow wave structures which produces 6 kilowatts average power at 55 gigahertz

and is expected to generate i kilowatt at i00 gigahertz. The overall efficiency

using depressed collectors is 25 percent. A 3000 hour life test was successful

in the amplifier configuration and an 8500 hour test was successful in the

oscillator mode. TWT reliability equivalent to those below i0 gigahertz are

considered quite possible by the designer. Another high power tube of recent

success is the Ubitron, designed at General Electric. Peak powers of i00 kilo-

watts at 50 gigahertz have been obtained with expectation of 15 kilowatts average

power. The Hughes design alone represents verification that high power can be

achieved in the 30 to i00 gigahertz region with high efficiency.

Conclusion

The total transmitter weight is small compared with the

total satellite weight, and therefore weight does not represent a basis for

selection. Below i0 gigahertz several devices can provide the electrical

characteristics as necessary for DSMCS. _fne selection criteria was reliability.
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Below i0 watts the solid-state exciter and mixer is preferable. Between i0

and i00 watts_ the TWT demonstrated reliability is best. Above i00 watts_

only the kiystron reliability has been verified and thus is preferred.

Above 30 gigahertz little data are available to judge the reliability of

the devices since the designs are relatively new. Below I0 watts_ linear

beam devices such as TWT's_ klystrons 3 and BWO's appear most suitable for

DSMCS application. Above i0 watts the designs are generally experimental.

However_ the laboratory results indicate that kilowatt power levels are

possible at high efficiencies at 30 gigahertz or greater. Designers feel

that both the high power and low power millimeter tubes could be designed

to be as reliable as the amplifiers below i0 gigahertz within a few years.

Figure 4.1.2-2 represents a realistic estimate of total TWT conversion

efficiency above i00 watts. A deep space spacecraft transmitter will be

at this level by the DSMCS operational era.
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4.1.3 ANTENNA ELECTRICAL DESIGN REQUIREMENTS

Introduction

The primary result of the antenna design effort established

a functional relationship between the available antenna gain and system opera-

ting frequency for a family of available antenna weights. It is the intent of

this section to completely relate the antenna electrical characteristics to the

mechanical tolerances. The objective of the antenna subsystem is to coherently

add the signal energy of a plane wave over as large an aperture as possible.

The noise induced by antenna loss: must be as small as practical and at worst

near that due to the receiver. Similarly, the sidelobes should be sufficiently

low that the earth radiation noise is lower than the receiver noise. A variety

of large aperture antennas are examined in this section in order to determine

their capability to meet these objectives. The gross features of the candidate

antenna types were examined initially to determine whether or not further study

was warranted. The effect of surface deviations in a passive reflector was

examined along with consideration of feed position tolerances. Following a

review of the necessary electro-mechanical analytical relations, they will

be applied to the remaining candidate antenna types in order to determine their

relative and absolute performance for the generation of the gain and frequency

vs weight data for the system trade-off study.

4.1.3.1 Antenna Types

Six distinct types of antennas have been suggested for

consideration, Prime Focus Paraboloid, CassegrainianParaboloid, Multipole

Parabolic, Spherical Reflector, Fresnel Reflector and Planar Array. The unique

characteristics of two of the antenna types and how they effect system perform-

ance will be considered first. These two are the planar array and the array of

parabolic dishes. The critical parameter of a planar array in a DSMCS applica-

tion is the antenna system insertion loss. The system noise temperature which

effects channel capacity increases by about 7°K for every .1 decibel insertion
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loss increase when it is at a thermometric temperature near 300°K. The received

plane wave may be coupled to a low noise receiver one of two ways. Either the

wave may be received by an array of slots one-half wavelength apart and combined

in a fixed waveguide network or a planar array of controllable time delay elements

could focus the wave onto a feed point. In either case, it can be assumed that

the preamplification and detection occurs after the energy has been collected

since the number of separate low noise systems and support apparatus for a many

wave aperture is prohibitive as is the noise temperature of a preamplifier that

is not cooled to cryogenic temperatures. Antenna apertures for DSMCS consider-

ation, by necessity, is greater than 500 wavelengths across. The loss experienced

by a signal traveling through 500 wavelengths of TEoI standard waveguide ranges

from 2 to 6 decibels for the frequency range of 2 to 25 gHz. Although the 7°K

increase for each .i db loss increase approximation is not precise at these

loss levels, the noise contribution is clearly excessive and prevents their

use. Oversize wave guide could half the loss but this is not sufficient. Another

factor which suggests that large slotted arrays not be used is the extreme

difficulty in machining arrays composed of thousands of slots. The slot

position tolerances preclude implementing the rigidized, though less stiff,

foam array above approximately i0 gHz.

The waveguide insertion loss penalty of a planar

array could be avoided with a flat array which is illuminated via free space by

feeding it at a distance from the array. The position of the feed relative to

the array would be controlled by adjustable struts. The necessary time delay

character of this lens can be achieved by active phase shifters or some passive

delay method. The control complexity and the insertion loss of an active system

for DSMCS application are also prohibited. Passive methods such as variable

waveguide lengths for rods have not been built with apertures greater than i00

wavelengths because of the excessive machining tolerances. Earth radiation

contributions to the system noise in a passive lens could be appreciable due to

the strong scattering of the wave entering the lens. No further consideration

of this type of antenna system are planned, primarily because it did not exhibit

any particular superiority over single parabolic reflectors in an array and it

is much more difficult to build.
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Another antenna type considered was an array of

parabolic reflectors. The optimum number of antenna elements in such an array

is a compromise between the weight and diffic'dlty of implementing many receivers

and the improvement in channel performance due to such an increase. Three or

four elemental apertures appear to be the most appropriate number considering

general DSMCS requirements as well as the limited experience gained through

adaptive arrays on the ground. The phase-lock loop at each array element can

compensate for phase path difference to each feed from a plane wave but only

if the spacecraft is in the beam of the elemental reflector. The spacecraft

is maintained in the beam of each element of the array if the angle between

the plane of each element is kept below 1/lO the beamwidth of the elemental

array under all expected loading conditions. The effect of thermal and inertial

loading on the angle has been examined for mechanical structures established

by other requirements. An extreme thermal loading condition would be a 60°K

temperature differential across the support structure. This condition would

produce an angular difference between adjacent parabolic elements of .003 ° .

An inertial load of .8 g's_ which is far in excess of the expected ACS loads,

was necessary to produce this same angular difference. Since this angle error

combined with an uncorrelated .0026 ° standard deviation of erection tolerances

is more than a factor of lO below the .04 ° minimum beazwidth, further study of

an array of paraboloids up to the .04 ° beamwidth was warranted. The character-

istics of each elemental paraboloid are identical to those of the large

single paraboloid. The relative merits of one or an array of paraboloids and

other passive reflectors including the Cassegrainian, spherical and stepped

paraboloids (Fresnel) will be discussed following a presentation of the general

theory relating the electrical to the mechanical characteristics in a passive

reflector system.

4.1.3.2 Mechanical to Electrical Relationships

The deviation from the desired antenna pattern

due to mechanical distortions of a reflector can be separated into two classes_

systematic and random. The systematic error is that deviation in a pattern

from the ideal that can be calculated precisely for given mechanical error.

The random error is a statistical measure of the probable difference between

SGC 920FR-I

Volume III Page 126

I



I

i the actual pattern and the intended pattern induced by random mechanicaldeviations. The effect of the random error will be reviewed first followed

by the systematic errors. For both types of error the computation of the

I exact pattern involves solving the integral of (i) and (2) for the antenna
i

current distributions.

I 2 e (e, _) = -j_ _ ' - "
-_ Jv0_ • r e exp (j kO " R) dv

!

I

I
I
I
I

I

I
I
I

I
I

(i)

(e, _) = -_ Jv J i exp (jk _ • R) dv (2)

Ol

The coordinate system for these far field approximations is shown in Figure 4.1.3-1.

is the unit vector in the direction of observation and p is the source position

vector. For a few simple current distributions the field can be determined but

for most real antennas, the integration is a very tedious computation. The

integration has been mechanized for the general case on other antenna studies

on both an analog and digital computer and it is still quite tedious. The

integrations for an arbitrary current distribution in the case of the digital

computer is implemented by breaking the current distributions into small

apertures over which the phase deviation is small, and summing. The computation

required for the 500 wavelength and greater diameter antennas considered for DSMCS

is large. The computation is particularly difficult for the random error case

since many patterns would have to be computed to build up the necessary statistical

moment accuracy of the ensemble pattern.

In order to facilitate the computation of antenna

pattern distribution due to random error6 the statistical analysis of Ruze will
2

be considered here. This work was primarily intended for pattern errors induced

in parabolic reflectors. The analysis not only avoids the tedious computation

of patterns but also provides a description of the distribution of the antenna

characteristics. In order to make the analysis tractable, however, a number

of assumptions were required in the analysis. Their applicability to DSMCS

antennas is of primary concern. There are four assumptions for the continuous

aperture analysis.
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The errors are uniformly distributed over the aperture.

Thus, if the usual convention for computing root mean

squared phase error by doubling the deviation of the reflector

from a desired paraboloid is used, the result will be

conservative. The validity of this assumption is a strong

function of the reflector F/D (focal length to diameter

ratio), the assumption being more valid at the large

F/D ratios.

The local deviations from the desired surface are independent.

The validity of this assumption is strongly dependent on

the separation of the forcing function causing the anomaly.

Also, the number of independent forcing functions such as

manufacturing tolerances, deployment tolerances, thermal

loads and inertial loads, effect the dependence of localized

distortions over a single reflector.

The deviation of the true reflector surface from the desired

is gaussian distributed and the correlation function of the

phase error over the surface is of the form (3)

I Y2 (T) : 2 _ [i - exp ('T/CI2 ]

I

I

(3)

Where Y(T) is the phase difference between two points separated

by

is the mean square phase deviation of all points.

cI is the correlation interval.

I

I
I
I

I
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The gaussian approximation will usually be valid for any

antenna which is distorted by many comparable loads due to

the central limit theorem. By the same theorem, it can be

shown that the correlation function does represent the auto-

correlation function of the actual dish regardless of the

indention shape if the number of indentions or deviations

2
is large.
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(IV) The current distribution changes very little over a

correlation interval.

The increase in sidelobe level due to the reflector deviations

is described by the normalized antenna average pattern (4).

P(O) = Po(e)+ 4 c21w26 2 [7"] __2 e_l sin 0 (4)

where P (0) represents the pattern of an undistorted paraboloid.
i o

I 7 represents the phase front deviations 7 4(_) 2 Y

I (7 represents the reflector distortion)

G o is the undistorted reflector antenna gain

I If Cl--_X and [7 ] < + (4)

by (51.

can be approximated within i decibel

I
I

I
i

I

I
I

7 " 2 2 2

: Po (8) + 4 X2 GO exp .i-n sinK2 e clj

O

It is clear that the correlation interval is critical for sidelobe control. The

larger correlation region has the effect of directing the sidelobe power due to

distortions along the boresight axis. Also_ the increase in sidelobe level with

frequency is to the fourth power. If the correlation region is small _I < < X)

distortion induced sidelobe levels are independent of the pattern angle.

Equation (5) has been plotted with an 800 _avelength diameter aperture for

three different reflector tolerances in Figure 4.1.3-2. Also; Figure 4.1.3-3

shows the average sidelobe for a family of aperture diameters as a function of

the reflector error. Because the distortion induced sidelobes are inversely

proportional to gain_the average sidelobe relative to an isotropic antenna is

constant. Thus_ the antenna noise power received through the sidelobes is

relatively fixed over the range of aperture diameters.

(5)
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The degradation in the average antenna gain due to

reflector distortions is described by (6)

N

7" _=l s N .' _x2 )

For Cl<< k this reduces to (7)

NX2 [r 2 2 ] }
i1 - exp ( Cl_ )

22 '
Cl_ N _2

(6)

m

2 2 62
o__=l - 3rr cl (7)
Go 4 k2

And for the more probable situation for DSMCS of Cl> > k.

a_._= exp (-7) (s)
G

O

This is plotted in Figure 4.1.3-4 along with intermediate values of cI. The

analysis of Ruze further shows that the gain of a group of antennas all exhibiting

the same reflector distortion statistics are distributed in a gaussian manner

with the average gain reduction indicated by (6) and the second moment by (9).

I
= _2 G

OI

I

I

I

I

(9)

This is plotted for three correlation intervals with a nominal gain of 66 decibels

(4 x lO 6) in Figure 4.1.3-5. The spread of the distribution is clearly small

even if the correlation intervals are large when the gain is high.

The accuracy of the Ruze analysis is substantiated

by its wide acceptance. Many antenna designs have verified the results since

Euze made the first verification with a .76 meters (30 inches) parabolic

reflector at X-band in 1952. Even in large reflectors (> 15 meters) where the

assumptions two or three are not strictly valid, the gain and sidelobe relations

derived by Euze are found to accurately predict the antenna characteristics.
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The reduction in the antenna gain due to surface

distortions is described by (8) for most of the antennas under consideration

for DSM_. The gain of the perfect reflector with a feed accurately positioned

is described by (lO).

0o _-K1( _D )2 (lO)

where K I is a constant which depends on the aperture illumination, therefore,

_o )2G = _ ( -_ exp (-6 2) (ii)

I

i
I
i
I

I
I

I

Using

and

2w )2 d282=4 (--_

_D 2 _( )2d2G : El (-C) exp (12)

This function increases with frequency until a maximum occurs which corresponds

to the point where the reflector distortions are equal to a fraction of a wave-

length and then decreases thereafter. The peak of the function is found by

differentiating and setting the result equal to zero followed by a substitution.

Kl(o)2GLimit = 7 (V) _ exp [-i]
(13)

Using a nominal value for El, .60.

GLimit "014 ((d-__
= ±

2

The maximum gain occurs at f .
0

2

(14)

I f=(c)o _
4_ (d2)

(15)

i
I

I
I

or

let
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Figure 4.1.3-6 and 4.1.3-7 show the relation of D/drm s to gain at the gain limit

and the necessary relation of diameter to frequency to achieve it_ respectively.

In the preceding discussion it was assumed that

the reflector was illuminated from a point source located precisely at the focus.

The effect of a deviation of the radiating source center from the paraboloid

focus on the directivity or gain and beam position is considered next. The

deviation of the source center in the direction normal to the axis will be

considered first followed by the more complex axial motion. A linear distortion

of the phase (_) of a plane wave radiation from an aperture tilted by _ can be

described as in (16).

_=K_r

where r is the radial distance from the center of the aperture.

2TT
K-

k

This distortion is accompanied by a change in

the boresight axis of the main lobe of the antenna pattern by (17).

The parabolic reflector phase front distortion due to a small deviation X

normal to the paraboloid axis is not linear but is described by (18).

(17)

2 @ ] r_' = K cos -_- X T

where F represents the focal length

represents the angle subtended by the dish at the focus.

r

o = 2 arc tan _-_

The deflection is small compared to the focal length.

X << F

X
-= tan _-_
F

9' -_K[cos 2 +]d r
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Comparing (21) to (16) it is seen that the phase front departs from a single

linear function by (22).

2

COS

At the aperture edge ro,

=_ -_ 0L r O

over the whole aperture

and thus,

2°l0

Ol COS -_

and therefore the actual main lobe deviation must fall somewhere between the

two extremes of (25) and (17).

2 o
I _ cos _-I<I e,I<I_I

(22)

(23)

(24)

(25)

(26)

The beam deviation is shown for both extremes as a function of F/D Figure 4.1.3-8.

From the normalized plot it is clear that at low F/D the beam deviation can be

estimated to a reasonable accuracy by selecting the center of the range. The

loss in gain or directivity at gain maximum due to this motion is negligible

for the small beam deviations shown in Figure 4.1.3-8.

Motion of the feed along the paraboloid axis

is more probable than normal to it with some of the symmetrical support structures

considered for DSMCS. The quadratic error induced by motion of the feed phase

center along the axis is equivalent to the errors which occur in the near field

region of any aperture. The directivity or gain and beamwidth changes in the

near field are normally described by the parameter y. For a taper circular

aperture y is described by (23) 3 .
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where

A R

J _

The beamwidth of the antenna increases by y and the gain reduces by i/y _. These

results for the Fresnel region are converted to equivalent axial movement through

the edge phase error of the focused antenna compared to the edge error of an

improperly located feed. Figure 4.1.3-9 shows 1/y 2 for a normalized feed

displacement. For purely symmetrical distortion the boresight does not move.
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4.1.3.3 PRACTICAL ANTENNA CHARACTERISTICS

In addition to the review of electro-mechanical relations of

the preceding suction, this final report includes a thorough review of the

practical mechanical antenna tolerances in another section. With the

mechanical characteristics which evolved from that effort and the electro-

mechanical relations established, the characteristics of a practical antenna

are determined in this section. The primary emphasis will be on the antenna

gain since the other characteristics are not as difficult to control nor

are as critical to the overall system performance. The parabolic reflector

antenna with a feed located st the focus will be considered at length first

because the results can be extended readily to other antenna systems.

The parabolic reflector antenna with the feed located at the

focus is subjected to at least four major distorting forces. They are

the manufacturing, erection or deployment loads, and the environment loads

caused by thermal and inertial effects. These loads affect both the re-

flector characteristics and the accuracy and stability of the radiating

feed position relative to the reflector. With the exception of the thermal

loading each of these loads has a. random character because of the large number

of forcing functions which produce the deviation from the desired position.

In order to evalua£e the relative effect of the various loads, on antenna

gain, a common reference system is required. Because the maximum gain is

desired the axes of Figure 4.1.3-7 are considered ideal for this purpose.

Figure 4.1.3.3-1 shows the D/drm s ratio for the single solid paraboloid in

addition to three other types due to manufacturing and erection errors in

the reflector on these axes. Superimposed on this plot is the nominal gain

available for a system with the same aperture efficiency as was assumed in

Figure 4.1.3-6, and a perfectly loca£ed feed.

The maximum gain region for the single solid paraboloid occurs

far above the diameter acceptable for a standard shroud assuming tha_ the

maximum DSMCS study frequency, iO0 gHz, is utilized. Figure 4.1.3.3-2 in-

cludes the reflector distortion due to what is estimated to be a la thermal

load. Details on the appropriate qualifiers leading to the thermal distor-

tion computation are included in the mechanical review section. The shell

analysis discussed there showed that the distortion is independent of the

diameter and that for a fixed feed a D/drm s equivalent to a 70 decibel gain

is expected. With a backup structure to the shell an additional 4 decibels
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of gain is possible. The shell analysis also computed the position of the focus

for a minim_ reflector distortion using a least mean squared criteria. The gain

improvement with an adjustable feed is available for the larger diameter without

backup structure on the shell. However, an operational sensing mechanism to de-

termine the best position of the feed and a method o_ compensating for an error

is quite complex and will not be considered seriously now. The effect of inertial

loading is also shown in the mechanical review section. The results are not

plotted in Figure 4.1.3.3-2 because the present attitude control system design loads

cause reflector distortions several orders of magnitude below those of the thermal

load.

The effect of moving source center of the radiating feed from the

reflector focus is a function of the allowable pattern degradation and the para-

boloid F/D ratio. A compromise ratio of .42 was used for the mechanical design.

Ratios below .25 cause primary feed pattern problems and above .6 the feed struc-

ture tolerances becomes unwieldy. This value is typical of earth antenna design.

Figure 4.1.3-8 describes the allowable feed motion normal to the paraboloid axis.

Using a .i beamwidth allowable boresight axis motion, a feed movement of about

k/25 is indicated as maximum. With this criteria the maximum allowable frequency

for a given feed deviation from the paraboloid axis is plotted as a function of

diameter for erectable and non-erectable feeds in Figure 4.1.3.3-3. Figure 4.1.3.3-4

shows the effect of thermal loads on the focus motion using the same k/25 criteria.

Axial motion of the feed does not move the boresight axis but does degrade the

antenna gain. It is clear from Figure 4.1.3-9 that an axial feed motion of i0

times the normal to axis motion for the F/D = .42 will only degrade the gain by

I decibel. Mechanical tolerance work for t}_ica! designs has shown that the

axial beam motion due to manufacturing erection or environment loads are no greater

than normal to axis motion by an order of magnitude and therefore axial movement

is not the gain limiting motion.

Before examining the antenna weights some general conclusions can

be made regarding the various errors distorting the reflector and feed. A general

conclusion for all antenna types is that the maximum gain of an antenna is rela-

tively flat as a function of frequency. The only exception to this is the deploy-

ment error of the erectable feed included in the Figure 4.1.3.3-3. For a single

solid parabolic antenna the gain limit for a fixed feed is that due to thermal

loading on the reflector. The maximum gain region for a regular or modified shroud
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points towards a 50 to I00 gHz operating frequency. A bsckup structure to rein-

force the shell would reduce the thermsl induced distortion to thst of the manu-

facturing and calibration errors.

Two other reflector msterisl types are included in Figure 4.1.3.3-1

which could be applied to s single psrabolic reflector configuration, petal struc-

ture and mesh or inflatable structure. Most of the petal structure distortion is

caused by inaccuracy of the deployment process. The distortions due to deployment

are comparable to and csused by thermal effects described in Figure 4.1.3.3-2. A

fixed feed for the petal system would be sufficiently stable bssed on Figure 4.1.3.3-3

and 4.1.3.3-4 relative to the reflector gain limit. Thus, a gain of approximately

70 decibels is possible for the petal structure. The mesh or inflatable reflector

of present technology is definitely manufscturing and deployment error limited.

From the trsce on Figure 4.1.3.3-1 it is clear that the gains are below 50 decibels.

Based on snticipsted improvements snd technology, the mesh or inflatable errors

will produce an sntenns of approximately 60 decibels. At the larger diameters the

feed erection degradation is compsrsble to the reflector degrsdstion.

Implicit in the Figures 4.1.3.3-1 through 4.1.3.3-4 is the assumption

that the antenna is gain limited as described in (13) of Section 4.1.3.2. Further,

this implies that the Ruze analysis and its associated approximations are appli-

cable to the problem. For the cases where phase front distortions are caused by

either manufacturing or deployment errors such as in the inflatable or mesh

structure the error characteristics are compatible with the assumptions. This

conclusion is derived from the fact that the errors are caused by a large number

of local effects distributed throughout the reflector area. Their independence

is attributed to the many separate localized processes which caused the distor-

tions. Similarly, the petal structure is composed of many elements, each of which

are subject to the errors induced by the position mechanism.

The reflector error characteristics of s single solid reflector

are largely dependent on the type of bsckup structure used. In the case of the

unshsded shell thermal distortions dominate. The errors induced by the simple

thermal environment geometry assumed in the thermsl shell snalysis are not inde-

pendent. By sdding either more backup structure or by using a more complex and more

probable thermsl environment the error independence across the dish will increase.

In adding an sdditionsl thermal load such ss the earth's albedo a higher order of

distortion will be induced. Since the solid reflector must be small in order to

fit into the standard shroud, a backup structure for such a small reflector will
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most certainly be used. This would transfer the dominating errors from those due

to thermal bending of the shell to that of the manufacturing errors on the back-

limited lines may be used.

A _ssegrainian system pattern deterioration due to imperfect mechan-

ical components is nearly identical to that of the focus fed paraboloid. The

main reflector distortions are the same. The phase errors induced by secondary

reflectors which are typically of the order of i/I0 of the main diameter are

negligible since the D/drm s is constant if not improving with decreasing diameter.

The sub-reflector motion normal to the axis is similar to that of the direct feed.

The feed itself would be at or near the surface of the main reflector and would

not be appreciably off the ideal position.

A survey of present and anticipated inflatable structure technology

indicates that the manufacturing and deployment distortions of a spherical reflector

are not appreciably less than those of an inflated paraboloid. Thus_ since the

antenna efficiency of a sphere with spherical correction is much less than the

paraboloid of comparable gain, further consideration of the sphere is not justi-

fied. Also, the feed necessary for correcting spherical aberration is difficult

to build at 20 gHz and lower. At I00 gHz the feed manufacturing problem would be

extremely difficult particularly with a low insertion loss requirement necessary

for DSMCS application.

Similarly, evaluation of the mechanical tolerances of the Fresnel

antenna has shown that it provides no increase in D/o compared to more conventional

approaches, while its greater complexity raises other mechanical difficulties.

Figure 4.1.3.3-1 indicates that an array of solid reflectors provide

the maximum permissible gain. For the unshaded antenna there is not justif-

ication for going to multiple psra%olic arrays since the thermal distortions dom-

inate in a single shroud limited reflector. Further, the frequency at the gain

limit is beyond the DSMCS range for normal shroud configuration. Figure 4.1.3.3-2

shows that the thermal limit for each element will limit the gain to 70 decibels.

The antenna weight as a function of the antenna diameter for 5

antenna types is included in Figure i_.i.3.3-5. This information along with the

gain limit error plots are sufficient data in order to complete the desired

antenna gain as a function of mass and operating frequency plot. Although the

mass of the mesh and inflatable types is low, they are ruled out because of in-
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sufficient maximum gain. Similarly_ the aluminum structures may be ruled out due

to insufficient gains even though the mass is half for the same diameter. Gain

limit and deflections are proportional to the thermal expansion coefficient which

is 32 times greater for aluminum as it is for Invar. Thus for thermal limited

configuraZions such as the solid reflectors and array of solid reflectors the

Invar is mandatory. Invar is also required for the petal configuration because

it becomes thermal limited with aluminum. Antenna gain as a function of antenna

mass is given for the three configurations in Figures 4.1.3-6 and 4.1.3-7 • The

single solid reflector is below the gain limit aZ I00 gigahertz for the normal

and the extended shroud. The array of solid reflectors provides 2 more decibels

gain aZ the normal shroud diameter which is at the thermal limit for I00 gigahertz.

The Invar petal reflector configuration is manufacturing and deployment error

limited with present tolerances aZ 70 decibels for the normal shroud and 73

decibels assuming a I0 year improvement in mechanical tolerances.
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4.1.4 ANTENNA MECHANICAL DESIGN REQUIREMENTS

flections of antenna surfaces under inertial loadings were utilized in the study.

One of these programs utilizes the finite element approach where the structural

shell is approximated by a series of conical segments as shown in Figure 4.1.4-1.

Arbitrary circumferential loadings may be specified by expanding the loading

function in a Fourier series about the axis of symmetry of the antenna. Ar-

bitrary radial loadings may be taken into account by varying the Fourier series

from conical element to conical element. This program was developed by Dr.

Stanley Dong of the University of California at Los Angeles.

In addition to these programs, a third digital program was used.

This program computes the normal deflections and the root-mean-square of the

beam path length error for the distorted parabola using the original parabola

as a reference surface. The program will also use as a reference surface a

generated parabola which is a best fit to the distorted parabola in the least

squares sense. Of fundamental importance is the determination of the minimum

number of conical segments which are necessary to accurately and efficiently,

from the machine time standpoint, approximate the parabolic surface of the

antenna. This was accomplished by calculating deflections for both a axisymmetric

loading case and an asymmetric loading case, Figure 4.1.4-2, with the parabola

approximated by first, three conical sections, then ten and finally thirty sec-

tions as shown in Figure 4.1.4-1. Selected points, using the critical case,

are shown plotted in Figure 4.1.4-3 and 4.1.4-4 showing the horizontal, vertical

and tangential deflections for the two loading conditions described above, and

for the different numbers of conical segments that were used. it was described,

on the basis of these curves, that thirty conical segments would be sufficient

to accurately describe deflections/rms's of the parabolic shell. This was veri-

fied by computing (using the Richardson's extrapolation technique*) what the

values should be if a reasonably large number of conical segments were used. In

all the points tested the convergence of the deflections was rapid enough to

allow the shell to be accurately approximated by thirty elements. Limiting the

number of elements that are required to a reasonable value allows the program to

predict the performance of various antenna systems economically.

* Salvadori and Baron, Numerical Methods in Engineering, Prentice-Hall_Inc.,1952.
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The effect of thickness of a parabolic shell on its deflections

is extremely critical. This is because th_r_ are two ±_ur_ w_1±_ __-^_,_

how the shell will behave; namely_ extensional stiffness and bending stiffness.

The extensional stiffness is dependent on the thickness taken to its first power

while the bending stiffness is dependent on the thickness taken to the third

power. Thus; both the shell surface distortion pattern and magnitude can be

changed by having the bending stiffness predominate; the extensional stiffness

predominate_ or by having both quantities of similar magnitude.

For the types of construction and materials under consideration

the thickness to diameter ratio is in the range of lO -3 to 10 -7 . It was strong-

ly suspected that in this range the extensional stiffness would be predominant

over bending stiffness and this was analytically proven as shown in Figure 4.1.4-5_

and 4.1.4-6. The figures show the change in the rms (root mean square of path

length error from best fit parabola) due to a change in thickness of three dif-

ferent diameter parabolic antennas. The figures were based on a constant "g"

inertia loading condition of 0.i_ where 1.0 is equivalent in magnitude to the

gravity loading at the earth's surface. The source of this inertia loading

would be the attitude control system and was arbitrarily chosen for this analysis

as 0.i g. Since for small deflections the effect of increased or decreased load-

ing on the ms is approximately linear within the range of interest; the value

for the ms may be determined for any "g" loading of the attitude control system

by simple linear scaling. The figures note that thickness does not significantly

effect the rms for any of the three diameters shown. This is because the exten-

sional stiffness which is predominant; is a function of the thickness to the first

power; and the weight of a unit area of surface on the antenna is a function of

the inverse of the thickness. Thus_ for a constant "g" level of loading the ef-

fects of change in extensional stiffness and change in loading magnitude due to

the thickness (mass) change cancel out; resulting in a relatively constant rms.

The slight curve in the line is due to the effects of bending stiffness and would

become increasingly important as the thickness increased beyond what is shown in

the charts. Figure 4.1.4-7 shows the same effect but for the thermal loading

case of the antenna axis pointing directly at the sun. The same effect of exten-

sional stiffness predominance is shown for this thermal loading case as was shown
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in the inertia loading cases above. Thus, the hypothesis that bending stiffness

could be neglected was substantiated by the computer shell program being used.

The effect of E (elastic modulus) is again linear and may be seen

in Figures 4.1.4-5 amd 4.1.4-6. Comparing these two figures it is seen that the

effect on the magnitude of the distortion is approximately double for the

asymmetric loading (loading perpendicular to the axis of symmetry) as for the

symmetric loading _oading along the axis of symmetry). Thus, the asymmetric

is the critical loading condition for the inertial type loadings.

Figure 4ol.4-7 shows the effect of thermal loading on the deflec-

tions for the symmetric condition of the antenna pointing directly at the sun.

The figure shown is for a thermal expansion coefficient "_" of 13 x 10-6/°F only,

however_ the rms will again be a linear function of "_" and hence values of ms

for any "_" may be determined from this graph. It is seen by comparing this fig-

ure against Figures 4.1.4-5 and 4.1.4-6 for the inertia loading cases that the

thermal loading conditions are the more critical. Hence_ for a comparison of

antenna gain versus size the rms due to thermal considerations will be utilized.

rms due to the thermal loads will be nearly identical in either a solid shell or

a rigid mesh type structure. This occurs because a very good approximation of

the behavior of materials under thermal loads is obtained by using the linear

coefficient of thermal expansion which considers increase in size along different

perpendicular coordinates to be uncoupled. Thus_ a solid square plate of side

length "_" will increase along both coordinates just the same amount as would a

square made of only thin wires along each edge, if the squares were both the

same size and made of the same material.

4 .i .4 .i STRUCTURAL DESIGN ANALYSIS

The parabolic antenna was analytically studied to determine how

four fundamental loadings distorted the reflector surface. These four loading

conditions consist of attitude control pulses and solar heat flux vectors paral-

lel and perpendicular to the axis of revolution.

The results of the computer analysis to interrelate gain_ frequency,

diameter and structural deflections concluded that the rms for grid antennas is
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much higher than solid antennas, thereby causing a gain loss for any given dia-

meter. Gains for similar diameter antennas at the sam_ operating fr_qu_m_y

give the solid antenna up to 30 db more gain than grid antennas. It should be

noted however, that grid antennas are very appealing from a structural effi-

ciency consideration. Most of the surface of a grid type antenna is void, which

lessens the weight/unit area in direct proportion to the ratio of void area to

total surface area.

The reason for the electrical inefficiency of the grid antenna is

the relationship between the thermal distortion of a grid type antenna and a

solid antenna and how they differ from a best fit paraboloid. The rms as deter-

mined from the JPL "RMS" computer program is calculated on the basis of the dif-

ference of beam path lengths between the distorted antenna and a best fit para-

boloid to the distorted antenna in a least squares sense as shown in Figure

4.1.4.1-1. Hence, even if the original antenna undergoes large deflections in

relation to the operating wavelength; a low rms can still be achieved, if the

deflections are such that a translation or rotation of a best fit paraboloid can

minimize the affect of most of the distortion. This is the case for both the axi-

symmetric thermal loading and the asymmetric solid antenna thermal loading. How-

ever, even though the magnitude of the distortions of the grid type antenna are

no greater than the solid typ% the rms becomes much greater due to its distor-

tion pattern. In the grid type antenna there are two warm regions (front and

back) and two cold regions (sides) making the minimization of the rms due to

the shifting of the best fit paraboloid ineffective. It is because of this that

the grid type antennas yield a much larger rms and hence, a much lower gain than

the corresponding solid antenna.

There are several ways to overcome the thermal distortion problem

posed by the grid type antennas. One would be to use a thin membrane bonded to

the mesh which would be opaque to solar radiation. This membrane could also be

of use in erection of the antenna if inflation techniques are utilized. Another

method would be to encase the entire antenna in a thermal protective cover. One

other approach would be to use a thermal compensating material to overcome the

large distortions. However, there is insufficient work being performed in this

area to warrant serious consideration for the antenna system being considered.
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Hence, it ix not expected that a solution to the grid distortions by a thermal

compensating material would be available for use by the DSMCS.

From a structural point of view_ operation at a higher frequency

(30-100 gHz) could be more easily accomplished than operation at lower frequency

(2.3-10 gHz). The interrelationship between frequency, diameter, and surface

tolerance for a given gain level enters here. Higher frequency communications

could utilize small (1.8 - 5.5 meter diameter) very accurate surface antennas while

the lower frequencies utilize less accurate surfaces but much larger antennas

(18 - 90) meter diameter). Very accurate small (under 5.5 meter) antennas could be

fabricated by accurately machining the surfaces; and the thermal problem could

easily be circumvented by a covering as proposed above. However, operation at

frequencies at or near i00 gHz may not be desirable. In this case, two avenues

are open. One, the larger antennas may be used with additional investigation

into overcoming the thermal distortions and two_ hybrid antennas may be used.

A hybrid antenna would combine the advantages of a very accurately machined cen-

ter hub region (up to 5.5 meter) with an erectable skirt. The skirt could be con-

structed of panels_ petals or grid materials. The outer skirt would be subject

to the distortions mentioned above but their smaller size plus the large support

perimeter afforded by the center hub could_ when combined with a lower frequency

lead to a more optimum system.

4.1.4.1.1 THERMODYNAMIC ANALYSIS

Critical conditions affecting antenna surface rms (root mean

square of surface distortion) are from thermal radiation emanating from the

Sun. Examples of axisymmetrical thermal flux (Sun vector along axis of revolu-

tion of the antenna) problems and asymmetric (Sun vector perpendicular to the axis

of revolution of the antenna) thermal flux problem were investigated. Compari-

son of results shows the latter to be the critical loading condition consider-

ing both thermal and inertial loads in both the axisymmetric and asymmetric modes.

Thermal Model of Antenna:

The following assumptions for the thermal analysis of the antenna

_ere made:
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Radiation effects were predominant over conductive effects,
i.e., conduction was assumed to be zero.

The temperature was uniform throughout the thickness of the
antenna.

Neither "6" or "¢" vary with the angle of incidence or

temperature.

The energy impinging on the antenna is a direct function of

the projected area.

The ratio of "_" to "c" equals unity (obtainable with special
thermal coatings).

4 .i. 4 .i.2 AXISY_$[ETRI C THER_kL CONDITI ONS

This case corresponds to the direction of the incident thermal

energy being parallel to the axis of revolution of the antenna as shown in

Figure 4.1.4.1.2-ia.

The absorbed energy per unit area will be

E = a H cos @
a (i)

where = absorptivity

H = solar radiation at 1.0 AU

0 = angle that tangent to antenna makes with

aperture plane

The radiated energy per unit area (both surfaces) will be

E = 2¢ _ T4
r

(2)

where
¢ =

@ =

T =

emissivity

Stefan-Boltzmann constant

temperature in degrees Rankine
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hence_

At equilibrium the absorbed energy equals the radiated energy and

T =_/H cos @ (3)
2_¥

The above equation specifies the temperature for the axisymmetric

thermal loading condition along a meridian as a function of the tangent angle of

the antenna and is presented in Figure 4.1.4.1.2-2. The temperature does not

vary circumferentially for the axisymmetric case. The computer program was ori-

ginally written to provide Fahrenheit outputs rather than Centigrade and in

order to maintain continuity in the analysis_ conversion to Centigrade was not

acceptable.

4.1.4.1.3 AXISY_$_TRIC THEP_iAL CONDITIONS

This case corresponds to the direction of the incident thermal

energy being perpendicular to the axis of revolution of the antenna as shown

in Figure 4.1.4.1.2-ib.

On the half of the antenna exposed to the direct rays of the sun

the absorbed energy will be

E : C_ H sin 8 sin
a

(4)

where = angle that tangent to antenna makes with the sun

position vector (see Figure 4.1.4.1.2-3)

The radiated energy will be

E :e _T 4
r

Hence at equilibrium

4
q/H sin 8 sinT
V

(_)
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The above equation specifies the temperature for the asymmetric

loading condition on the half of the antenna that is exposed to direct sun-

light. The backhalf (half not exposed to direct sunlight) presents two sepa-

rate cases. One case considers the class of antennas that are solid and do

not allow sunlight to pass through the frontside to strike the backside. The

other case considers the class of antennas that are constructed of wire grids

or meshes and do allow direct sunlight to impinge on the backside. These two

cases will be considered separately.

4.1.4.1.3a SOLID ANTENNAS

The backside will not receive any direct solar energy but will

receive a heat flux from the radiation of the frontside surface. It was cal-

culated that the average energy impinging on the backside was 2.3_ of the

amount of energy radiated by the frontside. The assumption was made that the

energy radiating from the front side fell uniformly over the backside. This

causes a temperature gradient as shown in Figure 4.1.4.1.3a-I.

4.1.4.1.3b GRID ANTENNAS

The grid or mesh type structures present a completely different

thermal profile because of the solar energy that passes through the frontside

and impinges directly on the backside. This causes a temperature distribution

that has a warm section on the center of the backside as well as the center of

the frontside.

From Figure 4.1.4.1.3b-i it is seen that the thermal energy

impinging on the backside is a function of wire size to grid hole size. For

a wire diameter to hole width ratio of 9:1 the solar energy striking the

backside will be in ratio to the radiation striking the frontside as

Eback (.81
Efront

Taking (4) into account yields

Eback = _ H

sin e sin _ (6)

(.9o) sin _ ] 2 (_)
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The backside will also be subjected to radiation energy due to frontside radia-

tion, this will be

Era d = (k)(.023) _ H (8)

where k is a constant depending on the amount of void space that is present in

the frontside surface. For this case taken above k = .19 (81_ void area versus

19_ wire area).

The radiated energy will be

E =eoT 4
r

Hence, at equilibrium the temperature will be

T =V H (.81 sin2e sin2_ + .0043) (9)

The above equation specifies the temperature for the backside

surface when the antenna is constructed of a grid or mesh material. This tem-

perature distribution is shown in Figure 4.1.4.1.3b-2.

Other methods to limit deflections due to solar radiation were

sought in addition to those already presented. The most hopeful solution found

was selection of materials with a lower coefficient of thermal expansion. There

is a class of such materials called "Low Expansion Alloys" whose properties are

presented in the American Society of Metals Metals Handbook. Of these, the

material Invar seemed the most promising with the following properties:

Composition: iron-nickel alloy of 36_ Ni with minor amounts of

Mn, Si, and C;

Coef. of Thermal Expansion: 0.5 to 10-6/°F (0.9 x i0-6/°C) -

Increases if temperature reaches 200°C.

Elastic Modulus: 21.4 x 106 ibs/in. 2 (i 5 x sq. meter. lolO Kgs )

Density: .29 ibs/in. 3 (.805 x 104 Kgs )
cu. meter

Elastic Limit: 20-30 x I03 ibs/in. 2 (14-21 x ]05 Kgs/sq. meter)
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Yield Point: 40-60 x 103 ibs/in. 2 (28-42 x 105 Kgs/sq. meter)

Tensile Strength: 65-85 x 103 ibs/in.2 (45.5-60 x 105 Kgs/sq.meter)

Since the deflections of the antenna are directly proportional to the coefficient

of thermal expansion, the use of Invar represents an order of magnitude decrease

in expected thermal deflections. This gain in accuracy is not without penalty_

however_ because the elastic limit of I nvar is approximately the same as aluminum,

but its weight is three times greater.

Surface distortions have been presented as a value called rms,

related to a best fit paraboloid. Since the best fit paraboloid changes both

shape and orientation for different loading conditions, the relation of the rms

to this varying reference infers that an adjustable secondary relector (or feed)

must be positioned. With the electrical problems inherent in commanding a contin-

uously tracking secondary reflector, it was concluded that an optimum DSMCS de-

sign should not consider a continuously adjustable feed. Hence_ additional

computer calculations were made to determine the effect fixing the feed had on

the rms The results of these calculations are presented in Table 4.1.4.1.3b-i

along with the values for an adjustable feed based on the use of In;tar. It is

seen that fixing the feed increases the rms from one and two orders of magnitude

depending on the loading condition. Cross plots relating rms obtainable for dif-

ferent structural materials and for both adjustable feed and fixed feed are pre-

sented in Figures 4.1.4.1.3b-3 through 4.1.4.1.3b-6.

4 .i .4.2 MANUFACTURING AND DEPLOYMENT SURFACE CHARACTERISTICS

4.1.4.2.1 RIGID SINGLE PIECE ANTENNAS

This type of antenna would be similar in construction to the

standard ground-based antenna and would consist of a rigid reflecting surface

supported with a back-up space-truss and would present similar manufacturing

problems. Figure 4.1.4.2.1-1 shows the manufacturing tolerances held on some

of the high precision ground-based antennas and would also represent the manu-

facturing tolerance that could be held on similar sized rigid space antennas.

An anticipated line is shown also and represents what are conservative estimates

for 1975. Table 4.1.4.2.1-1 and Figure 4.1.4.2.1-2 present a comparision of the
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rigid single piece antenna versus the other structural types discussed. It is

seen that D/_ (ratio of aperture diameter to Lh_ root-mean-square of the surface

deviations) values of 83,000 can be achieved for a 5.5 meter (18-foot) antenna

(maximum diameter possible due to shroud restrictions). A D/_ of 93,000 can be

achieved if the diameter is decreased to 4.3 meters (14 feet) which is the maxi-

mum diameter possible due to shroud restrictions for an antenna stowed in the

upright position in Saturn shrouds.

4.1.4.2.2 _[CLTIPLE PARABOL01D ARRAYS

A configuration of this type is shown in Figure 4.1.4.2.2-1.

Since the multiple paraboloid arrays would utilize several rigid single piece

antennas in combination, the surface characteristics of the total array would

relate directly to the surface characteristics of the individual paraboloids.

It has been shown the maximum size that could be packaged using the present

Saturn IB shroud is a set of four paraboloids each 4.3 meters in diameter.

This yielded a total aperture area equal to that of a single paraboloid 8.6

meters in diameter.

Each of these 4.3 meter diameter antennas could be manufactured

to a D/o of 93,000 and hence the D/_ of the multiple system based on the total

effective diameter would be 186,000. Even though a higher effective D/a can be

achieved for the multiple paraboloid array than for a single dish, it must be

remembered that the multiple paraboloids will have loss associated with their

individual erection tolerance build-up. It was calculated that the four-

paraboloid antennas could be erected co-planar to within a deviation of 30 arc

sec (three sigma). A tabular presentation of this is shown compared to other

structural antenna types in Table 4.1.4.2.1-1 as a function of diameter.

4.1.4.2.3 ERECTABLE PETAL PARABOL01D ANTENNAS

This type of antenna would consist of large numbers of radial

slices (petals) of a paraboloid that are erected mechanically into a configura-

tion easily packaged during launch.

The deviation of a petal type antenna from a true paraboloid is

composed of two principal components. The first consists of the surface
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deviations of each individual petal due to manufacturing error. The second con-

sists of petal deviations from the true paraboioid due to erection misaiignment.

Two types of erection deviations were studied. The first considered the de-

viations that would occur for a purely mechanical erection and locking system_

with no effort made to calibrate individual petals once erected. The second con-

sidered the deviations that would occur if each petal was first erected then

aligned through a servo operated system.

It was assumed for the calculations of the portion of the ms

that was due to erection misalignment that the petals were distributed about

the mean in accordance with a normal distribution. The results of this study

are presented in Table 4.1.4.2.1-1 and Figure 4.1.4.2.1-2 compared to other

structural antenna types.

4.1.4.2.4 INFLATABLES AND MESH TYPE STRUCTURES

This type of construction consists of the expansion of a thin-wall

inflatable structure. The structural material could consist of an expanded

mesh or a material similar to Echo II material.

Figure 4.1.4.2.4-1 presents both present and anticipated values

of D/_ and ms versus diameter. The present values are based on manufacturing

and erection deviation data supplied by Viron Corporation and Schjeldahl Cor-

poration for the small sizes (3 meter diameter) and by data on the Echo balloons

for the large size diameters. Information on structures of the type being con-

sidered in the intermediate size regime is not available and hence values for

this region must be interpolated. It is expected that a full order of magnitude

increase in D/a is obtainable within the next i0 years. This is reflected in

Figure 4.1.4.2.4-1 for the anticipated values.

4.1.4.2. 5 FEED POSITION

Antenna mechanical characteristics have thus far been referenced

only to the deviations of the antenna surface. Of equal importance to the elec-

trical performance are the deviations from the nominal position of the feed

(prime focus system) or the secondary reflector (Cassegrainian system). The
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deviation of the feed or secondary reflector must be kept nominally at or below

1/20 of a wavelength or severe defocusing will occur. An analysis was made of

a repre ......... erecta _I_ tetrapod and is presented below.

4.1.4.e.5a ERECTION TOLERANCE

From Figure 4.1.4.2.5a-i the following relationships are evident:

d. : _mi (l)
l _ \\

N

dtota I d + 6= i _ (i - 1) (3

i--_ i

yields

substituting (i) and (2) into (3) and closing the summation

dtotal = 7 L + _ 2 (4

where the following nomenclature is used

C = compressed packaged length

d. = deviation caused by "i" segment
i

dtota I = summation of all d.
i

D. = diameter of "i" segment
1

6 = minimum clearance between the I.D. of the "i" seg-

ment and the O.D. of the "(i+l)" segment

_i : angular difference between "i" segment and the
"(i-l)" segment

£ : engaged length
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obtained

L = extended length of each segment

N =

C
R -

S

S :

total number of segments

- ratio of package length to extended length

total extended length of tetrapod

Again from Figure 4.1.4.2.5a-i the following relationships are

s = NL + _ (5)

I

I
I

I
I
I

I
I

I

then

c : r : _ (6)

S - C)L : _ (7)

C
defining [ : R the ratio of packaged length to extended length

and substituting (7) and (6) into (4) yields non-dimensional form:

dtotal

S (NR-2R+I)(NR) (N-l)]
4(NR-I) . (8)

This equation is shown graphically in Figure 4.1.4.2.5a-2. It

is seen that for a given value of C/S (compressed length/extended length) there

is an optimum number of boom segments to use based on a minimum value of

dtotal/S (ratio of the tip deflection to the extended length). On the basis of

the figure_ and using packaging ratio restrictions as imposed by the Saturn IB_

shroud computations were made to relate the feed (or secondary reflector) struc-

tural support tip deflection to aperture diameter. These erection tolerance

build-ups combined with calibration tolerance build-ups are presented in Figure

4.1.4.2.5a- 3.

I

I

4.1.4.2.5b OPERATION TOLERANCES

An analysis was also performed as to the normal deflections an

erectable feed or secondary reflector support would make under operational

I

I
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loading. The results of this are presented in graphical form in Figure

4.i._._.5b-i and are ba_ed on _i_e a_iL_±u_ _ ....... _....._ therm._1_ desi_

the temperature gradient of the erectable feed support structure can be kept

at or below 20°F.
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4.1.4.3 ANTENNA WEIGHTS SUMMARY

Antenna weights were calculated as a function of antenna diameter

for the different types of antenna under consideration and are presented in

Figure 4.1.4.3-1. The weights as shown in this figure include the primary re-

flector_ gas and end cap system if applicable, solid center hub, structural

attachment to the satellite and any necessary erection mechanisms.

The types of antennas shown are the single piece rigid antenna_

the multiple parabolic array, multiple petal antenna_ inflatable/rigidizable

antenna and expandable mesh antenna. The diameter of the multiple parabolic

array is for the purpose of this figure taken to mean an "equivalent diameter",

where the surface area of all the multiple paraboloids are lumped together into

one equivalent large paraboloid. The Fresnel antenna was also given considera-

tion but it was determined that no significant increase in the diameter to rms

deviation (D/a) would be obtained compared to the more conventional approaches,

while its greater complexity raised other mechanical difficulties.

Two different basic materials are shown for each type of antenna,

namely aluminum and Invar. The Invar antennas have been Shown to possess

superior thermal deflection characteristics because of the low coefficient of

thermal expansion of Invar metal (0.9 x I0-6/°C). However_ the aluminum anten-

nas may be constructed to a lighter weight due to the greater strength/weight

ratio of aluminum. A thermal shade or protective cover would have to be pro-

vided for the aluminum antennas in order that the antenna performance not be

seriously degraded.

I

!

It is noted from Figure 4.1.4.3-1 that the expandable mesh anten-

nas can be made lightest for any given diameter. This is followed in order of

increasing weight/unit area by the inflatable/rigidizable, rigid single piece

antennas, multiple parabolic arrays, and multiple petal antennas.

I

I
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m__1_ 4 1 l,.!.3b_!J. _ U J-_ • • ,

RELATIONSHIP BETWEEN DIFFERENT LOADING CONDiTIONS_

FEED FIXITY_ AND RMS

Loading

Condition

Axisymmetric
Inertia

Loading

0.01 "g's"

Asymmetric

Inertia

Loading

0.01 "g's"

Axisymmetric
Thermal

Loading

Asymmetric

Thermal

Loading

Asymmetric

Thermal

Loading
For Mesh

Antenna

Aperture

Diameter

Meters (Feet)

3.o5 (lO)

18.3 (6o)

3o.5 (ioo)

91.4 (300)

3.o5 (io)

18.3 (6o)i

3o.5 (loo)l

91.4 (300)

3.05 (lO)

18.3 (6o)!

30.7 (1oo)!

91.4 (3oo)

3.05 (lO)

18.3 ( 60 )

3o.7 (lOO)

91.4 ( 300 )

3.05 (lO)

18.3 (60)

3o.5 (lOO)

91.4 (300)

rms Referenced rms Referenced

To "Best Fit" Parabola To Fixed Parabola

Fixed

Focal

Length

.0002

.ooo5

.oo42

.0003

.ooo8

.oo75

.0o05

.oo31

.0o52

.o156

.0001

.ooo3

.ooo6

.oo17

.0087

.o523

.o872

.2616

Variable

Focal

Length

.0002

.ooo5

.0041

.OOO3

.0oo8

.0075

.0oo5

.oo31

.o052

.o155

.oooi

.ooo3

.ooo6

.0017

.oo83

.0499

.o832

.2496

Fixed

Focal

Length

.0018

.0051

.0460

.o242

.0673

.6057

.OO57

.0342

.0571

.1712

.0037

.0219

.0366

.1097

.0118

.0706

.1178

.3532

Variable

Focal

Length

.OOO9

.OO27

.0239

.0242

.0673

.6057

.0030

.0178

.0297

.0891

.0037

.0219

.0366

.i097

.0117

.0703

.i171

.3513

!
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Inertia Loading Vector

I ZENITH DIRECTION --Axisymmetric Loading
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! HORIZONTAL DIRECTION--Asymmetric Loading

! Figure 4.1.4-2. Loading Cases
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I Example of Low S_S Achieved Because Deflected Points _ould
be M4n4m4_ed by a Rotation of the Original Antenna.

I
Best fit parabola in least squares sense to

I _ points

,

I
I

I
I

Example of Large _ Achieved Because Deflected Points Could

Not be Minimized as Effectively as Above.

Figure 4.1.4.1-i. Achievable RMS' s
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I Diagram __ "@" - The Angle _t a Tangent to the

Amtenna Along A Meridian Makes With the Aperture Plane

!

I

I

I
I

I
I
I

I

I
I

Parabolic

Antenna Direction of

Incident Thermal

Energy

¢

Diagram Showing"_"- The Angle That a Circumferential Tangent
to the Antenna Makes with the Sun Position Vector

Figure 4.1.4.1.2-9. Antenna Angle Definitlons
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Figure _. i. 4.I. ]b-l. Diagram Showing T_t the Thermal Energy Impinging on the

Side of the Antenna Away from the Sun is a Function of
the Ratio of the Wire Size to Grid Hole Width
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__ Comparison of D/G versus Diameter
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!
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! Figure 4.1.4.2.1-2. Comparison of D/_ Versus Diameter for Different Types of

Parabolic Antennas
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Figure 4. i. 4.2.5a-l. Diagrams Showing Relationships Between Segments of

Erectable Feed or Secondary Reflector Support
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4.2 POWER

q_+i _ _ °_+°_! _ Dower .....__- -_ _ ......-"........_

established through energy management tradeoffs.

Combinations of power systems investigated included:

l°

2.

3.

4.

5.

Solar cells and batteries

Fuel cells and batteries

Radioisotope thermoelectric generators (RTG's)

Reactor/thermoelectric-thermionic and batteries

Reactor-dynamic systems

A listing of power system design considerations follows:

i. Average power level

2. Peak power level _ > Average power level

3. Lifetime > i year

4. Total energy

_. Sunlight 'geometry (day/night cycles in orbit, energy

collector orientation)

6. Power transient response

7. Radiation constraints

8. On-board g-level (fuel cells)

9. Lead time (Availability)

Power profiles established in Volume II Section _.2.2 as example

cases are shown in Table 4.2-1. Three primary power loads used in the profiles

are shown in Table 4.2-2. They are divided into transmitting, receiver re-

frigeration and satellite housekeeping. Operational conditions were arranged

to provide eight example power profiles including two receive only conditions.

Boundary conditions for the three primary power loads are described in Table

4.2-2. Transmitter power input for satellites with command capability varied

from 92.5 kWe to 30 kWe corresponding to approximately 30 kW and iO kW respec-

tively of radiated power. Receive only satellites did not require transmit

SGC 920FR-I
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power except to Earth. 6 kWe for maser refrigeration or i kWe for parametric

amplifier partial refrigeration were assigned. Partial refrigeration refers to

a level of refrigeration not optimum for system performance. Housekeeping

functions such as attitude control electronics and valve actuation, receivers,

command memory updating, data processing and any active thermal controlling

were assigned power levels of 1500 and 500 watts.

After investigation of DSMCS requirements, fuel cell power sys-

tems were rejected because of the excessive fuel weight. Dynamic power systems

were also rejected on the basis of required lifetime, anticipated launch date

and appropriate power level. The criterion for consideration was that the

achievement of maintenance-free operation of a power system for one year in

space at a power level of i kW or more be demonstrated by 1970 to an acceptable

degree. It does not appear that any dynamic power system will achieve such a

demonstration by this date. Therefore, unless the DSMCS mission is combined

with a power system demonstration mission, a dynamic power system is not

appropriate.

Table 4.2-3 presents a general account of power system types ver-

sus mission requirements.

4.2 .i NUCLEAR POWER SYSTE_Z

4.2.1.1 RADIOISOTOPE THERMOELECTRIC GENERATORS (RTG's)

The applicability of radioisotope thermoelectric generators

(RTG's) was investigated and found encouraging. Requirements for RTG units

included I0 KWe total power availability from static thermoelectric or thermionic

elements. A three year lifetime was also required as was shielding for elec-

tronic components. A launch rate of one satellite every two years beginning

in 1975 was assumed to estimate fuel availability and cost.

pessimistic element efficiencies follow.
Nominal

Efficiency

Thermoelectric

Thermionic

Cascaded-Thermoelectric/

Thermionic

lO_
15%
2o%

Present and

Pessimistic

Efficiency

8%
12%
16%
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I
Candidate T 1/2 (yr)

Fuel Availability

Available

1975 Number

(S/w)ofSatellites

Power (kW)

(@ 125 kWt) (@ i00 kWt)

Fuel Cost

(lO6 $)

I

I
I

I
i
i

Co - 60 5.27 --15 80 185 (148) 2.78

Sr - 90 27.7 --15 6 135 (109) 2.02

Cs - 137 26.6 --18 5 135 (109) 2.43

Pu - 147 2.62 _300 not enough 255 (200) 76.5

Pu - 238 89.6 _500 2* 127.5 (i or .5) 63.8

cm - 244 18.4 _200 4 140 (112) 28.o

*Competition with other missions

It was assumed that flight units would use hot-side solid state

coupling and NaK plus electromagnetic (EM) pumps or heat pipes on the cold side.

Fuel

Heater Size and Weight Estimates

Core Diameter Shield Thickness Heater Diameter

(cm) (cm Uranium) (cm)

Power

System Weight

(kilosrams)

2.2)

1.6)

1.96)

60)

51.3)

22.4)

I
I

I
I
I

I
I

Co - 60 25.4 13.5 52.3 2040

Sr - 90 63.0 6.9 76.5 7150

Cs - 137 116.7 4.1 125.0 20000

Pu - 238 58.3 0 68.o 16o

Cm - 244 32.5 36.0 i05.0 1350

The cores are 50_,oiron equivalent_ with the core representing over

half the total system weight. With core redesign_ the power system weight could

conservatively be reduced to one half. Co-60, Sr-90, Cs-137, Pu-238 and Cm-244

are acceptable systems. Co-60 and Sr-90 are most economical considering fuel

and launch vehicle associated costs and will be used for this example.

The size of multiple RTG's for Profile B were estimated on the

basis of current state-of-art for temperatures and efficiency. The RTG's may be

visualized as heat sources suspended inside a double-walled can. Heat is radi-

ated from the source to the inside wall_ conducted through thermoelectric elements

between the walls_ and radiated from the outside wall to space. The inter-wall

I

I
SGC 920FR-I
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spaces between the thermoelectric elements are filled with insulation.

following temperatures are appropriate:

Fuel capsule surface 975°K

Inside wall (hot junction) 875°K

Outside wall (cold junction) 590°K

The

Location of these temperatures are shown in Figure 4.2.1.1-1 while

a 3 unit configuration for Profile B (3900 watts/unit) is presented in Figure

4.2.1.1-2. Each RTG is approximately 1.5 meters in diameter x 1.5 meters in

length. Additional information on thermoelectric elements is found under

SNAP-IOA.

A single 20 kWe RTG investigated for Profile H was considered

far beyond what has been considered a practical design limit.

Additional cost and availability information is shown in Table

4.2.1.1-1 while Table 4.2.1.1-2 presents a history and performance summary of

_ _±__ systems.

4.2.1.2 SNAP-I (System for Nuclear Auxiliary Power) Isotope Rankine

The SNAP-I system is in effect the pioneer system for the SNAP-2

and SNAP-8 systems directly and indirectly, the reactor-powered Rankine cycle

liquid metal turbo-alternator systems which follow. Although it was planned

for an isotope thermal source, the system was carried through its entire develop-

ment with electrical source testing.

SNAP-I is a Rankine cycle mercury system delivering 500 watts

from its turbo-alternator. Although this unit was driven on hydrosphere bear-

ings as opposed to the journal bearings of SNAP-2, it served to supply basic

information regarding mercury as a lubricant. Advances were made in the tech-

nology of mercury as a working fluid, of mercury containment materials, and of

static and dynamic seals for liquid and vapor mercury. Both the alternator

and mercury pump served as archetypes upon which to pattern the design of their

SNAP-2 counterparts.

The SNAP-I rotating unit, at design speed and design operating

conditions, experienced an uninterrupted run of 2300 hours. Based upon this

performance, and the advances in technology since that time, it seems reasonable
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to expect a high degree of reliability from this system. Its growth potential,

however_ seems _t_ !i_ _ 11_ _f _a_g _h_y t_ _m_ _+_

will probably require a pair of contra-rotating turbo generators to maintain roll

stability. The rotating system is on the same order of size as that of SNAP-2_

and yet delivers one-sixth the power. Its 500 watt output is a small margin

over its combined bearing, pump, windage, seal and electrical losses. A varia-

tion in any of these becomes important, particularly with a decaying power source.

Thus, it would seem that the major contribution of the SNAP-I

program has been to establish a base for the SNAP-2 and SNAP-8 extensions.

4.2.1.3 SNAP-2 Reactor Dynamic

The SNAP-2 concept has seen little change since its initiation in

1957. It is a two-fluid, two-loop system powered by a zirconium hydride reactor

similar to that of SNAP-8 except for power level. Originally, sodium was desig-

thermodynamic characteristics. The NaK trade-off, however, was made at the

expense of the rotating unit design, since the shaft-mounted NaK pump is larger

and heavier than its sodium counterpart.

SGC 920FR-I
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m_^±11_merc,_y ............7nnp_nu%,s_s the CRU (combined rotating unit), the

condenser which radiates to space, and the boiler which gains its thermal ener_

from the reactor coolant. Mounted on the CRU shaft, in an integrated rotating

assembly, are the turbine, the alternator, the mercury pump, and the NaK pump.

Bearings are of the sliding type and are lubricated by the working fluid mercury

With the exception of weight, there has been little change in the

performance objectives of the SNAP-2 system.

listed below :

l,

2.

3.

4.

5.

K

7.

8.

9.

The original requirements are

3 kWe net output.

One year unattended operation.

270 kg. maximum system weight.

i0 sq. meters maximum radiator area.

Operation in hard vacuum and zero-gravity.

0pe_n_ _ m_crometeoroid environment.

Orbital startup.

System burnup if re-entry becomes necessary.

Packaging to withstand launch conditions.

SNAP-2 Weight Estimates

Listed below are the 1962 estimates for the SNAP-2 system, includ-

ing shielding for equipment protection only.

Boiler

Rotating unit

Radiator plus inventory

Controls

Structure

Piping

Orbital startup system

Reactor

Shield

Total

45 kilograms

22 kilograms

90 kilograms

i0 kilograms

22 kilograms

15 kilograms

45 kilograms

ii0 kilograms

15Okilograms

509 kilograms

Note: A more recent estimate places the total system at 700 kilograms.

SGC 920FR-I
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Present SNAP-2 Performance Specifications

Electrical

Power output

Frequency

Voltage

Reactor Coolant Outlet Temperature

Radiator Inlet Temperature

Radiator Surface Area

System Net Thermal Efficiency

5kW

2000 Hz

500 volts RMZ 3 Phase

925°K

590°K

l_2

9_

Siz_____e

The SNAP-2 oower conversion system is housed within the radiator.

The radiator fits into or is integrated with the vehicle cone. Its surface area

is 10m 2 and is approximately 1.5 meters in diameter at its base. The reactor

is held in the apex of the cone beyond the condenser. In the present concept,

approximately 4 meters separate the reactor from the payload.

Reliability

Apparently, the major factor in the evaluation of reliability for

the SNAP-2 system is the combined rotating unit. The unit is credited with an

accumulation of over 2500 hours of running time at or near design operating

conditions, while it has continuously run for 500 hours. The Sunflower rotating

unit, which is similar to the SNAP-2_ ran for 3100 hours. The Sunflower unit

shaft, since it does not mount a NaK pump as does its SNAP-2 counterpart, is

shorter and is unburdened by a cantilever section. The absence of the NaK pump

eases the thermal condition at the turbine bearing and permits a modified bear-

ing housing assembly.
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The SNAP-2 power conversion system has been planned to for one year

_ 1 ±U- UL.L CbA J._. _ _. a _3o. u 1L/..11Uty • &Ale _.- V J.J.U. IL _ ill UII _ W £1..L _.; J.l

extreme are of continuous unattended operation and probable orbital start-up.

The critical criteria for endurance are as follows:

.

2.

3.

4.

5.

Dynamic loading in the rotating unit.

Corrosion, erosion and mass transfer.

The NaK-Hg seal.

Reactor.

Reactor effect upon system.

4.2.1.4 SNAP-8 Reactor Dynamic

The components shown in Figure 4.2.1.4-1 plus a working fluid

Mercury, comprise the bare necessities of the Rankine Cycle SNAP-8 system. The

working fluid enters the boiler in its liquid state. There it absorbs heat and

stores this energy by changing to a vapor under pressure. T_is vapor t_en 1"lows

to the turbine where it gives up a part of its energy by expansion, a process

which drives the turbine mechanically. The Mercury is still mainly in vapor

form when it leaves the turbine but its useful energy has been expended. Now

it must be returned to its liquid state at a proper pressure so that it can again

be capable of drawing boiler energy. Thus the turbine exhaust vapor flows to the

condenser for cooling to the liquid state. The heat dissipated by the vapor in

the condenser is an inevitable thermodynamic loss. The liquid from the condenser

is then pumped back to the boiler to renew its cycle. The sole form of input

energy is heat. The output is mechanical energy plus heat. The mechanical en-

ergy may be transformed, as in SNAP-8, to electrical energy.
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The prime requirement of the heat source is that it furnish an

adequate and controllable supply of heat continuously for i0,000 hours. This

makes a reactor the indisputable choice. _s a result of the interrelationships

in the reactor, turbine, and condenser, mercury is the selected working fluid.

Mercury, because of its effect upon reactor operation, must be isolated from

the reactor. Thus, a primary loop, with NaK as the fluid, acts as the buffer.

It extracts heat from the reactor to supply the mercury boiler. A NaK pump is

added to maintain primary loop flow.

The SNAP-8 Electrical Generating System (EGS) will deliver, unattend-

ed, 35 electrical kW continuously and constantly. Since power demands will vary,

a device to protect the alternator during low power demand periods is necessary.

A parasitic load resistor serves this purpose by accepting and dissipating excess

power as it is sensed by the electrical control circuit. Speed regulation is also

attained by control circuitry which, again utilizing the parasitic load resistor_

Startup of the system takes place in space upon ground command.

Successful startup demands a minimum temperature of 31.3°K in both the NaK and

lubricant radiators for proper fluid viscosity. The reactor is first brought

to operating temperature. Then the primary loop NaK and bearing lube pumps

are battery-driven through inverters to start flow. When the NaK flow heats

the boiler to the required level, the liquid mercury is injected into the

boiler, which then builds up vapor to start the turbine. When required, the

NaK heat rejection loop flow is started. Finally, the turbine attains the

speed to produce enough alternator power to drive the pumps. The batteries

are disconnected and the system builds up to full power.

Working System Weight Summary

The flight article weight of 2925 kilograms is the target for

SNAP-8 designs. The breakdown weight shown below should not be interpreted

as the attainable value but only the target values.
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Power Conversion System

Prinmry Loop

Boiler

Mercury Loop

Condenser

Turbine-Alternator

Heat Rejection Loop

Cool and Lube Loop

Startup Equipment (including batteries)

Electrical Assembly

SNAP-8 and Satellite Attach Structure

Nuclear System

Reactor

Shield

Flight Radiator Assembly

Total

ii0" kilograms

240* kilograms

65* kilograms

30* kilograms

130" kilograms

105" kilograms

40* kilograms

170 kilograms

225 kilograms

30____0kilograms

1415 kilograms

200 kilograms

500kilograms

700 kilograms

810 kilograms

2925 kilograms

*Includes Inventory

4.2.1.5 SNAP-10A Reactor Thermoelectric

Snap-10A design requirements consisted of: (a) production of 500

watts at 28 vdc for one year in the space environment, (b) capability of remote

startup in orbit by ground command, (c) capability for handling, transport, and

launch within acceptable safety criteria and currently accepted launch base pro-

cedures, (d) no requirement for long-term dynamic control, (e) sufficient instru-

ment capability on the SNAPSHOT launch to fully monitor system performance, and

(f) radiation shielding to attenuate reactor leakage to acceptable levels within

the spacecraft. The reactor is the ZrH type with about 4.8 kg of fully enriched

_35 fuel. The fuel-moderator is in the form of 3.17 cm diameter, 31.13 cm

long rods clad with Hastelloy and densely packed within a 23 cm diameter by
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40 cm long vessel. Surrounding the core vessel is a beryllium neutron reflector

containing four semicylindrical control drums. These drums affect startup of the

reactor by varying the neutron leakage. Long-term system control is achieved

through the inherent stability associated with the reactor type. The reactor is

cooled by a circulating loop of liquid metal, NaK-78_ a eutectic of sodium and

potassium. Liquid metal is used as the coolant because of its negligible vapor

pressure at required operating temperatures and because it is virtually noncorrosive

to available containment materials.

The SNAP-IOA converter had an objective of operating in space for a

year at temperature of approximately 825°K with an efficiency degradation of

less than i0_. In the case of the SNAP-10A converter, the early contending

materials were PbTe and SiGe alloys. SiGe was ultimately chosen for the final

system_ despite its lower figure of merit and efficiency, because: (a) SiGe alloy

is metallurgicaliy stable Co weal a0ove $_p°_ (Po_e suoiimes at temperaLuw_ _buv_

approximately 700°K and would require encapsulation_ complicating the device);

(b) stable low resistance electrical contacts can be made of SiGe by metallurgically

bonding (experience with PbTe indicated only relatively unstable higher resistance

mechanical contacts could be achieved); and (c) the mechanical properties of SiGe

are more uniform and less restrictive design-wise.

SNAP-IOA represents a first generation reactor thermoelectric space

power plant. Its technology is conservative. The present SNAP hydride reactors

will support more advanced systems operating at temperatures in the 975°K to I025°K

range. Because the specific power output of a thermoelectric system is approxi-

mately proportional to the absolute temperature to the fifth power, operaticn at

these higher temperatures will dramatically improve system performance. Since

the reactor power source and shield weight are virtually independent of small

changes in power level, the obtainable outputs per unit system weight increase

substantially at larger system power levels. Table 4.2.1.5-1 summarizes

SNAP-10A operational characteristics. SNAP-IOA related advanced reactors

under development are presented in Table 4.2.1.5-2.

Operational lifetime of thermoelectric systems has been intimately

related to the thermocouple operating temperature_ the higher the temperature the
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 _ _ V_ r _ _ _ _ +Ih _ _ _ _ _ ne SNAP-]OA systems, reasonable thermo-

couple lifetimes were obtained by operating the devices below the maximum avail-

able reactor temperature. Recent thermocouple diode development has extended

reliable device operation to keep pace with the SNAP-10A reactor temperature

level. Figure 4.2.1.5-1 presents a thermoelectric performance growth curve show-

ing SNAP-IOA couples operating at 0.4 watts/couple and 775°K compared to advanced

couples operating at over 1.2 watts/couple at 975°K. Operation of the advanced

couples has been satisfactorily established and their use in conjunction with a

SNAP-10A reactor could increase system output from 500 to 1500 watts. The 1500

watt thermoelectric system has been designated SNAP-lOB. Weights versus power

levels for the SNAP-IOA/IOB reactor, for thermoelectric SNAP-8 systems and for

intermediate power levels are included in Figure 4.2.1.5-2.

Acceptable radiation dose rates for unmanned equipment are related

to SNAP-10B shield weight and reactor-payload separation distance in Figure 4.2.1.5-_.

A general curve covering power levels to 15 kWe relating separation distance to

power levels is found in Figure 4.2.1.5-4. Direct radiating and compact converter

system schematics are shown in Figure 4.2.1.5-5. (Reference I) A 2 kWe reactor

thermoelectric power system is depicted in Figure 4.2.1.5-6. This unit is approxi-

mately 4 meters in length. A cluster of these units to satisfy Power Profile B

would be incompatible with shroud constraints. Table 4.2.1.5-3 presents reactor

thermoelectric performances for systems from 0.5 to _ kWe. The units, however,

could be packaged in long Titan shrouds for Profile E.

4.2.1.6 SNAP-50

Concept

This power system concept is included for historical value. Develop-

ment has been discontinued and it is doubtful that further work will be accomplished

in the near future. _ne scarcity of published reports regarding the SNAP-50

I

I

I

(i) Nuclear Power Systems for Advanced High-Powered Communications Satellites,

J. D. Gylfe AIAA Communications Satellite System Conference, Washington,

D.C. May 2-4, 1966.
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program allows very little detailed description of the system. Apparently, the

studies made in the Spur program established the basis for SNAP-50 feasibility.

These studies coupled with the prior work done at their CA/TEL facility by Pratt

and Whitney, plus their efforts with a lithium cooled, uranium carbide reactor_

provided the beginnings of SNAP-50.

It was expected that the system would be capable of 300 kWe to

one megawatt output. Lithium was the reactor coolant while potassium was consid-

ered for the Rankine cycle working fluid. A direct condenser radiation was

considered for heat rejection.

SNAP-50 Weight Estimates and Performance Specifications

I

|

I

I

Boiler

Power Conversion Group

Reactor

Shield

A typical weight estimate for SNAP-50 follows:

228 kilograms

340 kilograms

450 kilograms

270 kilograms

350 kilograms

Total 1638 kilograms

A typical performance specification is listed below:

I

I
I

I
I

I

Power Output

Reactor Coolant

Reactor Outlet Tempo

Turbine Working Fluid

Turbine Inlet Temp.

Radiator Inlet Temp.

Radiator Surface Area

System Net Thermal Efficiency

300 kWe

Lithium

1325 ° - 1375°K

Potassium

1325 ° - 137_°K

925° - 97_°K

2
90 m

12-15{

Although the above estimates seem reasonable, some weight increase

should be expected as design progresses. Radiator changes would obviously in-

crease weight_ particularly if it should be decided that condensation occur by

heat transfer to another fluid which in turn would reject heat in an all-liquid

radiator. Also, the hign heat rejection temperature may require a preheat of

I

I
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the radiator, leading to increased weight of the startup system: The reactor_ and

consequently the shield, will probably see negligible weight or size increase even

if power is increased°

_s_ma_eEverything considered, the present specific weight _ _ _ _

5.5 kg per kWe seems reasonable, particularly for one megawatt output systems, in

spite of the fact that increased radiator surface implies at least a proportionate

increase in weight required for meteoroid protection.

Growth Capability

I

I

!

I

I
I

I
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I
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Based upon the estimates given here for the 300 kWe system, the 5.5

kilograms per kWe for system specific weignt may be reduced to 4.5 kilograms per

kWe for the one megawatt system. This follows from the reasoning that increased

radiator weight would be more than overcome by the negligible increase in the

reactor and shield.

•]_ gNAP__ gvgT_m _on_ain_ oo_ortunities eoual to that of the

SNAP-8 system for the use of multiple component modules in various combinations.

Achievement of long-term operation_ providing the one year goal is reached, in-

volves improvement which is interwoven with the problems of hign temperature

materials. Development to the next logical advance in liquid metal dynamic systems

with nuclear sources seems contingent mainly upon increasing temperatures.

4.2.2 NON-NUCLEAR POWER SYSTEMS

Introduction

_ne applicabilities of non-nuclear power systems to unmanned space

missions are compared, primarily with respect to their anticipated specific

energy/power capabilities in the 1970-1985 period. Power sources from 2 to 50

kWe with durations up to 3 years have been considered.

The types of applicable non-nuclear power systems can be broadly

divided into those that derive their energy from the sun and those that utilize

the chemical energy of on-board fuels. The anticipated performances of the

solar power systems are compared to each other on the basis of system specific

power. Solar power systems are more susceptible to damage from the space environ-

ment than are the chemical systems, and in earth-orbiting missions they must

I
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include some form of energy storage device for power while the spacecraft is

damage from the trapped radiation belts at the orbital altitudes required in

this study. At the power levels under consideration, the energy collecting

surfaces of the solar power systems are large and must be fully oriented toward

the sun. _ne size of these collectors and constraints on launch configuration

will require that they be erectable. Inflatable structures of adequate size_

with sufficiently accurate surface contours_ and capable of the necessary

orientation control will be required for the DSMCS.

Chemical energy systems suffer none of the above disadvantages of

the solar derived power systems and they are comparatively independent of the

space environment. System performances are time-dependent and they are com-

pared to each other on the basis of system specific energy.

Comparison of solar systems to chemical systems must consider both

of power level for the power range considered.

4.2.2.1 CHEMICAL SYSTEMS

4.2.2.1.1 BATTERIES

Primary batteries provide a very reliable energy source. Silver-

zinc batteries are well developed and currently yield specific energies of 36

watt hours per kg. For very large batteries; it appears that packaging

could be improved to produce 45 watt hours per kg. Battery temperature,

during use, should be maintained at about 295°K for maximum energy output.

Performance is degraded at lower temperatures by increased internal resistance

and at higher temperatures by increased internal leakage current.

Now being developed is the Mg-M_O 2 battery which is expected to

be operational by the early '70's. Anticipated storage life for this battery

is about four years at 245 ° - 305°K. With organic depolarizers, specific energies

of 45 watt hrs/kg are expected. The Li-AgCI battery is also expected to

produce 45 watt hrs/kg in the next decade.
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The projected state-of-the-art for primary storage batteries is

_ 45 ....÷÷ _/_ ....._÷_ improvements _ o+_g_ I_ _s n_t_n_l _m_-

ture range. Batteries are simple power sources and are rugged, but for the

ranges of power and duration being considered, they are excessive. Throughout

the 2-50 kWe power range, chemical dynamic systems weigh less for durations

exceeding a few hours. Primary and secondary space batteries are summarized

in Table 4.2.2.1.1-1 and Table 4.2.2.1.1-2.

4.2.2.1.2 CHE_ CAL-DYNA_ C SYSTE_

Chemical-dynamic systems have relatively good specific power

capabilities but their energy conversion efficiencies, from chemical to mechani-

cal to electrical, are poor. Therefore, they are best suited for missions re-

quiring high power for short durations which is not the DSMCS power profile.

Systems utilizing liquid hydrogen and liquid oxygen should be available at about

i0 kg/kW for the conversion components plus 0.6 kg/kW hr. for the fuels and

tankage. Table 4.2.2.1.2-1 presents a survey of chemical dynamic system

performances.

4.2.2. i. 3 FUEL CELLS

Fuel cells are the most efficient devices for converting chemical

energy into electrical energy, with conversion efficiencies of 80% rather

easily achieved. It is expected that by 1970, hydrogen-oxygen fuel cells with

ion exchange membranes or solid electrolytes will be operating at specific

weights of 30 kg/kW for the cell and its controls plus 0.5 kg/kW hr. for the

fuels and tanks. Because of their higher conversion efficiency, fuel cell

systems would weigh less than chemical dynamics systems for duration of about

i00 hours or more but for DSMCS applications their system weight is excessive.

The specific fuel consumption of hydrogen-oxygen fuel cell is about 0.5 kg per
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kW hr. The power profile of minimum energy is Profile "F" and this energy is

13_130 kW hrs. Thus, it is evident that the fuel weight for this chemical

systems is prohibitive.

4.2.2.2 SOLAR-POWERED SYSTEMS

4.2.2.2.1 Solar Collectors

In an earth orbit, the size of solar collectors will be approxi-

mately i0 m2/kW of system power output. Collector size is the most crucial

technological problem of solar power systems using the collector approach.

The development of large inflatable or unfurlable collectors will be required

and in view of work already started in this direction, is a reasonable expectation.

_nis approach also requires that the collector be oriented to the

sun. Attitude control will be required to point the satellite antenna at the

spacecraft, but additional considerations are required to point the coJlector

at the sun. The complexity of this orientation requirement cannot be ignored,

but for the purpose of this comparison, the weight involved is considered small

with respect to total power system weight.

4.2.2.2.2 SOLAR-DYNAMIC SYSTEMS

Solar-dynamic systems concentrate the sun's radiant energy so that

it can be absorbed by a thermodynamic working fluid at a high temperature. The

collector is a mirror and it requires precise orientation to the sun. The opti-

cal quality of the mirror surface will degrade with time due to micrometeoroid

erosion and to sublimation. The present state of development affords only small

confidence in system availability of competitive efficiencies and substantial

life-time in operational status during the 1970's.

For comparative purposes, however_ system efficiencies are assumed_

System efficiencies of about 184 may be achievable with furnace temperatures of

about 1700°C. The Sunflower program leads to a specific power prediction of

about 28 kg/kW and from the Astec program, about 32 kg/kW. The collectors of

these systems represent about one-third of their total weights. With further
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development of inflatable collectors this fraction should be reduced, but for

now let it be assumed that this reduction will be abso_'b_d by the orientation

controls. A survey of solar dynamic system performances is shown in Table

4.2.2.2.2-1.

4.2.2.2.3 PHOTOVOLTAIC SYSTEMS

Solar cells convert solar energy directly into electricity with

efficiencies up to 13% for individual cells and 10% for panel arrays. Sub-

stantial improvements in conversion efficiency are not anticipated in the next

several years. However, the development of thin-film solar cells that will

have the same efficiency as the present silicon cells is anticipated. These

will have improved resistance to radiation damage, will be of less weight, and

will be more easily applied to large area applications.

As with solar-dynamic systems, the development of large area in-

flatable or unfur!able panels wmii be req_i±_d. ..............±__.., _w_...._v____......_......Is

is less stringent than for solar mirrors, however. Also since solar cell output

follows a cosine function with respect to solar orientation, the pointing

accuracy need not be especially precise nor is surface flatness as important

as contour control in collectors. Methods of stowing the panel compactly dur-

ing launch and in a manner that will avoid solar cell damage by the stowing

and erecting processes must be devised.

For this comparison, it is assumed that thin-film solar cells on

a flexible substrate will have the same weight per unit area as present crys-

talline silicon solar cells including cover glasses, adhesives, connecting

tabs, and wiring but not including panel structure. This figure is 1.9 kg/m 2.

No improvement in temperature characteristics is assumed.

The output of solar cells increases with increased illumination

intensity but decreases with increased temperature. The temperature of a flat

solar panel normal to the sun vector as a function of distance from the sun is

shown in Figure 4.2.2.2.3-1. This characteristic is based on present optical

properties of solar panels using reflective coatings on the solar cell cover
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glasses. The solar absorptivity is 0.78 and the thermal emissivity is 0.83.

An o_ packi_g _m_±_y........... is _,_,_ _ *_e area _. ...... t_ s_l_o_ _i_i_ is

painted white. The space environment will degrade the optical properties of

the white paint. Allowing for such degradation, the assumed optical proper-

ties of the inter-cell areas are 0.4 solar absorptivity and 0.8 thermal emis-

sivity. The back side of the panel would be treated for high thermal emissivity

and a value of 0.90 is assumed. The effect of temperature on solar cell power

output is shown in Figure 4.2.2.2.3-2.

Secondary batteries must be used with the solar cells to provide

power while the DSMCS is in the earth's shadow and during peak power periods.

The use of silver-cadmium batteries at a maximum discharge depth of 50% and at

an energy density of 15 watt hours per kilograms is assumed. This is state-of-

the-art although it has not yet been demonstrated in space. The solar array

must not only provide direct power, but also power to recharge the batteries.

The batteries and the solar array must be sized to operate the DSMCS when the

orbital plane is parallel to the earth-sun vector, at which time the orbital

shadow period will be the longest.

The design goal for current studies of erectable solar panel

structures is I0 watts/kg for normal incidence of sunlight at air mass zero.

Solar cell assemblies currently weigh 0.45 grams per I x 2 cm

cell. This includes:

•154 mm thick glass filters

•38 mm thick silicon solar cell

•127 mm thick insulation layer of epoxy impregnated scrim

cloth silicon rubber adhesive

interconnecting wiring

The use of thinner silicon cells has been investigated by J:.P.L

The breakage rate increases rapidly as thickness decreases, and performance

decreases. A reduction to .305 mm thickness would probably be advantageous, with
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respect to power-to-weight ratio, but a reduction to ,.203mm thickness would

probably not. If the panel structure were non-conductive, the insulation

layer could be eliminated.

Radiation Damage

Data for n-on-p cells indicates the radiation damage threshold

for electrons above 54 kev is 5 x 1012 electrons/cm 2 or for protons above 1.2

mev is 2 x 109 protons/cm 2. For both electrons (> 54 key) and protons (>1.2

mev) an acceptable power ratio is:

P( _e_p)
p = 1.00 - 0.15 (log _e - 12.7) - 0.15 (log _p - 9.3) (i)
o

where the concentrations _, are measured in particles/cm 2 and log _ > 12.7 and
e

log _p > 9.3. For a simplified approximation, it will be assumed that the

damage is directly proportional to total dose (energy absorbed), but that the

surface dose, which is only important in solar cells, is independent of particle

energy. This assumption should be reasonably good in the kev range for elec-

trons and the mev range for protons. Thus, Equation (i) will be assumed valid

for all threshold energies of electrons and protons. Note that the use of

particle concentrations for the solar cell analysis differs from the dose ("rad")

analysis used for other materials. Cell degradation as a function of electron

and proton flux is shown in Figure 4.2.2.2.3-3. The endurance of solar cells

in the radiation environment as a function of altitude is shown in Figure

4.2.2.2.3-4.

The effect of shielding on solar cell endurance for i, 2, and 3

year lifetimes is shown in Figures 4.2.2.2.3-5, -6 and -7. In the second year,

the solar cell output is degraded an additional 9_ and in the third year it

is degraded an additional 5%. It will be noted that a i mm thick cover glass is

approximately equivalent to 0.2 gm/cm 2. Cover glass thicknesses above this

value are usually not considered practical. Figure 4.2.2.2.3-5 points out that

this amount of cover glass protecting cells in a ii00 km circular orbit for

i year will maintain power output to a level of 82.54 of the original output.

I

I
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4.2.3 SUMMARY

Solar panel and RTG power systems are the primary candidates for

the DSMCS mission. Table 4.2.3-1 compares system performance and weights for

the two systems and all the power profiles. °......_we-o±-_ne-art solar panel system

weights compare favorably to advanced development RTG weight expectations.

Improvements in the 7.35 kg/m 2 state-of-the-art number for solar panel weight

per unit area would reduce the solar panel system weight and give that system

a decided weight saving advantage over RTG's on the strength of power supply

requirements alone. However, Volume II points out the power system interface

considerations with other satellite disciplines that influence system selec-

tion other than the power system weight criteria by itself.

The solar panel systems noted in the table represent one year dura-

tion systems operating at the worst altitude case_ from shielding considerations,

of 1620 kilometers. Solar panels sized for specific output levels and zero

duced cell degradation. For example, Figures 4.2.2.2.}-5, -6 and -7 note that

as time in orbit is increased from i_ 2 and to 3 years, at a constant altitude

of i!00 km, cell area must be increased 21.2_, 92.3_ and to 1944 respectively

to provide the required power level at the end of the mission. Required solar

panel areas would not be considered excessively large if the Pegasus micro-

meteoroid detector panel configuration were applicable to the DSMCS. The large

length/width ratio of the Pegasus panels, however_ would require unwieldy atti-

tude control systems to provide DSMCS antenna pointing. Lightweight expandable

solar panel technology could reduce attitude control requirements on DSMCS

missions.

RTG system weights in Table 4.2.3-1 are representative of SNAP-10B

power system weights. _ne large SNAP-10B volume requirement would however not

allow the use of the required number of Units in the Saturn shroud. The long

Titan shroud would permit their packaging.
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Table 4.2.i.D-i

SNAP IOA OPERATIONAL CHARACTERISTICS

Initial Power (w)

Reactor Power (kwt)

Over-all Length (cm)

Base Diameter (cm)

Total Weight (cm)

Radiator Area (m 2 )

Maximum Coolant Temperature (K o)

_eslgn Llle (yr)

Power Conversion System

Material - Structure

Liquid Metal System

Radiation Levels at Vehicle

Mating Plane

565

38

348

127

246

5.8

333

i

Thermoelectric, "n" on "p" SiGe

Ti

316 and 405 SS

_eutron_~ lO13 _/c2/yr

Gammas _ lO 7 rad/yr

SGC 920FR-I
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Anode

Cathode

Blec_ol_e

Separator( s )

Seal

Case

Theore:icaZ Performance at 250C:

vol_age/ce_

wtt-h:./_ (active

r:,_ _:eriala only)

_tt-h=./cubic inch

(ditto)

Actual perforr_nR9 at 25°C end

50% discharge:- "/

voltage/ce_

va_t-hr./_.

watt-hr./cubic 1nob

Life, number of cycles:

10% discharge, lO0-r_.n, orbit

I

CA

NI

XOH

Pel!on, polypropylene, Or

"se_-perme_ble membrane"

reechanical, glass Or

ceramic

stainless, plast;tc oi, nylon

i. 50

1.30

148

27

1.24- 1.25

6- 9

O.b - 0.9

a_ 0°c,
25% discharge , iOO-min, orbit 10_000

24 hour orbit 4/

50% discharge, lO0-min, orbit 5,000

24 hour orbit 4/

65% discharge, lO0-mln, orbit 4,000

24 hour orbit _4/

at 25°C

25% discharge, lO0-min. Orbit 10,000

2_-hour orbit 4_/

50% discharge, lO0-mln, orbit 4,000

24-hour orbit _4/

65_ dischaz_e, lO0-_n, orbit 2,500

24-hour orbit 4/

at 50°C

25% dlschal, ge, lO0-m£n, orbit 5,000

24 hour orbit 4/

50% discharge, lO0,_n, orbit 2,500

24 hour orbit _4/

65% discharge, lO0-ndn. Orbit 1,000

24 hour orbit: _4/

Shelf life, days: JNi/CA /

at O°C, discharged _ J,000

charged 3,000

at 2S°C, diecha_ged 3,000

charged 5,000

50°C, discharged 1,500

charged 1,500

Cost, S/wart-hr. (at 25°C and

50% discharge 1 - 5; 20 - 50_/

Mean time tO failure _ secvioe mote than 1 year

Available amp°h0ur sizes 0.5 ° 50

Ave:Liable shapes rectangular

& cylindrical

i/ Lower vol_age for argentous, higher fOr argentio oxide.

T/ For silver, only argentous dace are given.

_/ Lower range for 100-m/n. cycle, higher fOr 24-h_. cycle.
_/ Not: recommended for 24=hour orbit.

__/ Est_ated ranges by t_o different sources.

Reference 4.2.1-i. Power Plant Study,

SGC 920FR-I

Volume III

II

Cd

KOH

ion-exchange membrane,

Nylon ÷ cellophane,

or cellulosic

mechanlcal, plastic Or
ceram/c

stainless, plaatl¢ Or nylon

1.zs- z.5_/
1.16- 1.5_/

79- 14_/

22 - 4011/

1- 1.1

7 - 15

0.9 - 1.8

7000+

90O+

4000+

900+

1500+

900+

5,000 - 12,000+

600+

l,S00- %000+

600+

1,000 - 1,800

600+

1,000+

75 - .120+

500 - 600

75+

250+

75+

.oo/:!o
800 - 1,000

800 - 1,500

500- 700

150 - 1,000

90- 565

1.20 - 4

0.i - 300

r ecl-.Anguelar

& cylindrical

Aerojet-General

lII

Ag

I(OH

lame as Ag/CA; also risking

lame el Ag/Cd

same as Ag/Cd

1.59 - 1.02-_/

1 59 - 1.82_ /

124 - 250_ I/

31 - 61L¢_

1.4 - 1.55

l:
1.2- 5

300O+

500 - 600

50_

300+

500+

150+

150+

500+

300+

150+

150+

50+

50+

100+

75+

50+

40+

20+

20+

H
500 - l.O00

365

365 - 1,000

200 - 270

150 - 180

73 - 90

0.75 - 5.50

0.1 - 500

rectangular

& cylindrle_l

Nucleonics, July 1965

Page 2}}

I



10

I
l
i

I
I

I
g

I
I
I

I

I
I

I

I
I

I

F_
E_

QJ

(.)

SGC 920FR-I
Volume III

f

o_

2_
_,,

ii_ °-

.4

."2_s

!

.,T,_

>.s

_; _.S._o_

__

•- _
§

$

6

Page 2_4

u_
kO
o_

h

o
-H

o

o

©
O
I

H

o_

J
I

eL)
o

(D

(D

I



|@

I
I
I

I
I

I
I

I
I
I

I
I

I
I

I

I
I soc 9_0_m-i

Volume III

*

I

U]

&

o

$

!

i !i

Wh
<(D
Oh

b_
rJ

0

0

0

%
(1)

!

°r_
0
gt

CO

c_

gt
©

0

d
I

,-t

&

©
0

(D

q)

Page 295

I



I0

I
I
I

I
I

I
I

I
I
I

I
I

i
I

I
I
I

t_

E-_

_o
H_

U.,,Z

H

cY]O

b

v

SGC 920FR-I
Volume III

H

b

o_
D_

O

o

6 __4,,o,o o.-.4 o o
-_-CO I_X r-I-0 K'_04 _ b-

kO Lr_ r-_ b-
--d-

b- O_ 0

_A-_oo_oo_
('dO Lr_

gd ,q

Od b- (Ix

CO _ I/_ r-I Lrx Lr_04
_cx

Od L_ (h

rq Lr_ChO 0 Lr_kO 0 0 Lf_
_00 b--_d- _ I_0 C_

,-_OJ OJ

04 (_ gd L_X

_', d,_d_o,.;,o _,.r', o
r-I (WOO r-I 0 ,--I II_ 0 kO b-

--5" _ C<i 04

d _o_._ o Ao _ o
_-_ _CO 0--#" LO_OO kO LO_

Od _C_

wh rq Lf_r-_ _d r--III_O _ _ E_ O
-_ CO , CO 04

o J_Jo-_o_ o
0 CO , CO Lf_kO I¢_ CO

Page 236

I



|O

I
I
I

I
I

l
I

i
i
I

I

I
I
i

I
I
I SGC 920FR-I

Volume III

g
- _-_° .oo_-i - ". o

f

f

Thermoelectric elements

_ot _in - _7_°w

Cold skin - 590°K

Fuel cspsule - 975°K

f Fuel

S Reflective surfsce

.............. _ Insulstion Layer

Figure 4.2.1.1-1. RTG Fuel Configuration

N

RTG RTG

Figure 4.2.1.1-2. RTG Configuration

Page 237

I



I
I

I

I
i iI

Figure 4.2.1.4-i.

SGC 920FR-I

Volume III

I

I
I
I

I
I

I
I

I
I

I

SNAP-8 Power System

Page 238



6o

I
I
I

I
I

I
I

I
I
I

I
I

I
I

I
I
I

Figure

SGC 920FR-I

Volume III

l.SL ' ' ' ' 'm

].4 ]0A MODULE i
ADVHIGH

].2-

I,,,,,-

o 1.0

O
o. 0,8

o 0.6

u,I

0.4 I_$NAP 10A

9_00 f I I I I I0 1000 1100 1200 1300 1400 1500

AVERAGENaKTUBE TEMPERATURE(OF)

500 600 700 8_30

I

u

1
(°F)

(%)

4.2.1.5-i. Thermoelectric Performance vs Temperature
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4.3 ATTITUDE CONTROL

INTRODUCTION

Attitude control system requirements have been estimated for two

DSMCS satellite configurations. The configurations selected are typical of the

extremes in geometric size and moment-of-inertia magnitudes. The smaller is a

nuclear powered satellite and the larger a solar powered satellite. Physical

characteristics of the two configurations are detailed in Section 4.3.2. Mis-

sion specifications are defined in Section 4.3.1. These determine functional

requirements for attitude control.

4.3.1 MISSION CHARACTERISTICS

In general, the mission of the DSMCS satellite is to continuously

monitor a spacecraft operating in deep space. Monitoring is accomplished by

pointing a body fixed, high gain, narrow beam antenna a±ong the s_iii_-to-

spacecraft line of sight (LOS) to receive spacecraft transmission. Information

received is relayed to a ground based station. In addition, the DSMCS is to

communicate angle of the line of sight (ALOS) tracking information to the ground

station. Provision for continued tracking and reacquisition in the event of

temporary loss of spacecraft transmission is desired. Specifications are as

follows.

Orbit

Earth, circular, polar.

Altitude, 750 km to 1635 km.

Longitude of ascending node, any value.

Lifetime

One to three years.

Operational era

197_ to 1985
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Orientation Requirements

Antenna pointing axis (roll axis) pointing along the LOS to with-

in one-tenth antenna beam width. Angle between the pointing axis and the normal

to the orbital plane: 30 degrees maximum maintained for several weeks, 17 de-

grees average over first year, 14 degrees average over second and third years.

Null roll angle inertiallyfixed.

Initial Acquisition

Remove _ 3 deg/sec tip-off rates and complete initial acquisition

of stellar reference frame within 2 hours after separation or after completion

of deployment of extendable and erectable equipment, if any.

Calibration Maneuvers

Within one hour after completion of stellar acquisition_ orient

pointing axis to point normally at ground calibration stations at time of pass

over station. The angle_ 7_ is defined as the angle 0etween _ne ca±lora_mon

station local vertical and the pointing axis as measured in the plane contain-

ing the local vertical and the normal to the orbit. Incrementally sweep

over the range from plus to minus one antenna beam width at the rate of one-

tenth beam width per orbit.

Spacecraft Acquisition

Satisfy orientation requirements within one hour after completion

of calibration.

4.3.2 PHYSICAL CHARACTERISTICS

Physical characteristics which influence attitude control system

requirements and design have been estimated for two configurations. The Nuclear

Powered Profile B Small Dish Configuration, and the Solar Powered Profile B 1600

km Altitude i year Small Dish Configuration. For brevity, they will be referred

to as the NB and SB configurations in subsequent attitude control discussion.

The two configurations are drawn to the approximate scales indi-

cated in Figures 4.3-1 and 4.3-2. These are deployed configurations correspond-

ing to the normal tracking mode of operation. Orientation of the body fixed
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axes are shown with the origins at the centers-of-mass. It is assumed that

both configurations have the same basic structure which is the cylinder with

diameter_ _r; and length; %x_ shown in Figure 4.3-1. Although the basic

structure would probably have a polygonal cross section for purposes of fabri-

cation and for other reasons; the circular cross section should be an adequate

representation.

Weight and balance data is given in Table 4.3-1. The antenna

hub center-of-mass locations; used later to estimate ACS imparted accelera-

tions of the hub; are measured from the drawings of Figures 4.3-1 and 4.3-2.

The hub center of mass (c.m.) location; xH; is the distance from the satellite

center-of-mass or; in other words; the location in body axis coordinates.

Table 4.3-2 shows geometric characteristics which will be used

in estimating attitude control system requirements. The projected areas and

their centroid locations are needed to approximate aerodynamic; solar; and

meLeorolG pressure inaucea _orques. As GescrlDe_ in Lne nomenclature; Lhe pro-

jected areas are designated by a subscript which corresponds to the body axis

normal to the plane of the area; for example, A is the maximum area projected
x

on the YB _ - plane. Numerical values in Table 4.3-2 are estimated from meas-

urements of the drawings of Figures 4.3-1 and 4.3-2.

The NB and SB configurations chosen for evaluation are seen to

differ greatly in size; they represent the extremes in weight and balance and

geometry over the DSMCS configuration range.

To estimate the effects of disturbance torques of magnetic ori-

gin; quantitative descriptions of the satellite magnetic fields are needed.

Appendix 1 of Reference (i); "Prediction of Spin Axis Drift"; provides a sum-

mary discussion of the many difficulties involved in formulating any precise

description. There_ the problem is simplified by assuming that the magnetic

properties of a satellite can be represented by a single dipole moment that

remains constant with respect to the body axes. It is noted that although

the actual magnetic properties of the spacecraft would not be expected to

conform strictly to this assumption, it appears to be true that the strongest

magnetic effects are due to the presence of permanent magnetic dipole moments;

and that in other studies; this assumption has yielded results reasonably
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consistent with observations. This assumption will be used in the DSMCS study.

However, assignment of a magnitude and direction to the _gnetic moment _emains.

Experience in the measurement and control of spacecraft magnetic

fields is reported in appreciable detail in Reference (i), "Proceedings of the

Magnetics Workshop". In this report, post despin values of magnetic moments

derived from tests of a number of spacecraft flight units range from 1.5 x 10 -8

weber-meters (12 pole-cm) to 3.0 x 10 -6 weber-meters (2350 pole-cm). It is

indicated that the residual magnetic moment can be reduced to values in the

neighborhood of the 1.5 x 10 -8 weber-meter value, dependent upon the extent of

magnetic control and testing of the design. Mariner 4 was subjected to a mod-

e'rate amount of control and testing. A residual magnetic moment of approxi-

mately 3.8 x 10 -7 weber-meters was obtained. As reported in Reference (2),

control of the _riner magnetic field was accomplished by imposing magnetic

field specifications on subsystems as follows.

perm.fields

current loop fields

(d.c. to 5 _z)

stability of perm fields

less than 5 x 10 -9 weber/m 2 at 9 meters

less than 5 x i0 -I0 weber/m 2 at 9 meters

5 x i0 -I0 weber/m 2 at 9 meters

An estimated 30 to 40 percent of the subsystems did not meet these specifica-

tions, it is noted.

It will be assumed that the DSMCS satellite will be magnetically

"moderately clean" as a result of design control like that on Mariner 4. That

is, specifications similar to those above are to be imposed on the DSMCS sub-

systems. For example, if a maser ar_lifier subsystem were to contain a super-

conducting magnet with a 0.5 weber/m 2 (5 kilogauss) flux density in the gap,

the field external to this subsystem which would appear to emanate from a mag-

netic dipole of approximately 1.3 x i0 -_ weber-meters (104 pole-cm) would be

corrected, or nulled, with a compensating magnet associated with this subsystem.

When many subsystems have magnetic moments which are each mulled

to within a standard deviation value as specified in the design control speci-

fication, the resultant satellite magnetic moment will have a standard devia-

tion value,
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aM = ]_ aM__ (I)

based on the statistical law of large numbers. In (i),

N = number of subsystems

aMi = subsystem magnetic moment standard deviation

Now, a second assumption will be employed. It will be assumed

that the number of subsystems or components which contribute to the resultant

magnetic moment is proportional to the average (continuous) power. This as-

sumption is thought to be conservative. It would seem to be true that the

number of current loops on solar panels for the solar powered systems would

increase in proportion to the average power. Otherwise, an increase in average

power might reflect an increase in individual subsystem power requirements as

opposed to an increase in the number of subsystems with a nominally unchanged

demand for each.

Based on the foregoing assumptions, the DSMCS satellite will have

a magnetic moment magnitude with a standard deviation,

for

PAVE = Average (continuous) DSMCS power

PA0 = Average power of a reference spacecraft

aM0 = Magnetic moment standard deviation of the
reference spacecraft

The reference spacecraft will be taken to be Mariner 4 with

3 aM0 = 3.8 x i0 -7 weber-meters

and

PA0 = 0.2 kilowatts (References 5 and 6).
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Thus_

3 _M = PA_E 8.5 x 10 .7 weber-mete________s (3)

kilowatt _

For the DSMCS Power Profile "B"_

PAVE = 7.5 kilowatts and

3 aM = 2.3 x 10 -6 weber-meters (4)

Significance of the magnetic moment of the satellite and 3 corre-

spondingly, the design control specifications will be discussed further in

Section 4.3.3, "Disturbance Torques".

Surface reflectivity characteristics of the satellite are to be

assigned in order to assess ACS requirements of aerodynamic and solar pressure

origins. Preliminary estimates have indicated that disturbance torques from

these sources are small compared to those of gravity gradient and magnetic

field origin. For both aerodynamic and solar pressure forces_ a variation in

reflection coefficients from the minimum value of zero to the maximum of unity

will cause a variation in resultant forces and torques which is no more than

_Y toi.

Aerodynamic reflection coefficients will be taken to be unity.

That is_ the surface reflection coefficient for tangential momentum exchange_

_T = 1 (5)

and the surface reflection coefficient for normal momentum exchange_

In Section 6 of Reference 4, it is reported that aerodynamic coefficient

values of between 0.8 and 1.0 are indicated based on a few measurements made

on typical engineering surfaces.
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Solar radiation reflectivity will be taken to be zero;

Ps = 0. (7)

The SB satellite solar panels will be designed to have a minimum reflectivity

near 0.05 to maximize solar power efficiency.

The above reflection coefficients yield forces which are parallel

to the relative direction of incident photons or molecules; thus, subsequent

mathematical manipulation becomes relatively tractable.

Offset between the center of pressure and the center of area in

each axis is subject to design control to some extent. A value

aeA = 0.033 meters (8)

is _l_.

An important physical characteristic of the satellite is structural

bending. Structural bending is thought to be the limiting factor on the accuracy

with which angular deviations between any two reference lines of the satellite

can be determined. It is reported in Reference 7 that development tests on

the AOSO experiment compartment, a tube approximately 1.2 meters in diameter

and 2.6 meters in length, yielded a thermal distortion of approximately 0.009

millirads for a l°C average temperature differential across the tube. It is

earlier reported in Reference 8 from a JPL study of Ranger that alignment ac-

curacy is likely to be no better than 0.09 millirads as a result of structural

bending. This would correspond to an average temperature differential of ap-

proximately 10°C across the AOS0 experiment compartment. It does not seem un-

reasonable to expect that the DSMCS satellite_ with a basic structure approxi-

mately 3.05 meters in diameter and 3.2 meters in length, would suffer a similar

temperature differential and corresponding thermal distortion of the structure.

Although fine alignments can be achieved under laboratory conditions, it will

be assumed that the DSMCS satellite alignment accuracies are limited to 0.09

millirads by ther1_l distortion of the structure in an orbital environment.
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An estimate of structural dynamic properties of the DSMCS satel-

lite is beyond the scope of this study. The first body bending modes would

normally be removed from the ACS natural frequencies, _fficiently to avoid

cross coupling. It will be assumed that this is the case and minimum beam

width for the two configurations is:

_N = 0.698 millirad (0.04 deg) (9)

4.3.3 DISTURBANCE TORQUES

Gravity Gradient Torque

With reference to the axis systems and nomenclature described in

Figures 4.3_ and 4.3-4, the origins of the body axes and of the orbit-plane

axes are at the center of mass of the satellite. The center of gravity does

net coincide _.H_ t_ r_nt_ of mass because the gravitational potential of

the earth varies with altitude. If orientation is such that the line of grav-

itational force applied at the center of gravity does not pass through the cen-

ter of mass, a torque tending to rotate the satellite will result. This torque

will be experienced by the DSMCS satellite as a disturbance which must be over-

come by the attitude control system. An estimate of the magnitudes of the body

axis components of gravity gradient torque is developed as follows.

Let _k be the vector location of an increment of mass, mk, in

body axes.

_k = Xk eXB + Yk eyB + Zk eZB (I)

The location, Pk' with respect to the center of the gravitational force field_

earth, is then

_k = Ro + _k (2)

The gravitational force on m k is given by the inverse square law as

- Pk

FGk = -_ _ mk (3)

Pk
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Gravitational torque about the center of mass contributed by this force is

TGk = _kX FGk (4)

Components of RO in body axes are

ROB

ROXB

ROYB

ROZB

[MOBS
o I (Sa)
RO (5b )

o (5c)

where

or

ROXBL

ROYB IROZB

MoB S (see Figures 4.3-3 and 4.3-4),

R0 a12 1

R0 a22 lR0 a32

(6a)

(6b)

(6°)

Combining (1), (2), and (6) yields the components of Pk in body axes as

PkXB

PkYBPkZB

al 2 R0 + Xk 1

a22 R0 + Yk

a32 R0 + zk

(Ta)

(_)

(7c)

°

Pk ms the sum of the squares of the components given in ( 7 ).

U'IO J'_ B | ,
that the orthogonal matrix,

After noting

2 + 2 + 2
a12 a22 a32 = i (8)

2
Pk may be written in the form

[i2 2 +2
Pk = R0 a12

2 2

SGC 92OFR-I
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Satellite dimensions are very small compared to the orbital radius. In accord-

ance with ( 8 ), the direction cosines have magnitudes which are bounded by

unity and they cannot vanish simultaneously. Therefore, ( 9 ) is very closely

the first order approximation

2 2 1+2 +2 +2 (i0)Ok = R0 a12 a22 a32

and

3 - - 3 - 3 (ll)
Ok R30 i - 3 a12 a22 a32

When (3) and ( 4) are combined,

for

- _L JkTak -- _n/ 3 (12)
P_

Jk = Pk x rk (13)

From ( 2 ),

Jk = (Ro + 9k ) x _k (13a)

_: _oxr_ _: _o_xr\ (_3_)

In terms of the components in body axes as obtained from ( I ) and ( 6 ),

JkXB

JkYB

JkZB

Ro

a22 Zk - a32 Yk

a32 xk - a12 zk

a12 Yk - a22 Xk

(14a)

(14b)

(14c)

-3
pk in the form of the right hand member (RHM) of (11) and the components of

Jk of the RHM of (14) are to be multiplied and substituted into (12) to obtain

the components of TGk in body axes. Net torque is then obtained by summing

the contributions associated with the increments of mass. That is,
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TG = )2 TGk
k

(15)

Because the body axes are defined as principal axes with origin at the center

of mass, factors of terms in (15) will be

Z mk x k = Z mk y k = Z mk z = _] mk Xk y k = _. mk Xk Zk
k k k k k k

= _ mk Yk Zk = O,

and

2

r. mk xk = ix
k

z%y_ = i x
k

p

_ mk Zk = AZ
k

(16a)

(16b)

(16c)

which define IX, Iy, and IZ. Performance of the multiplication and summation

with the above relations employed yields

TGB

TGXB

TGYB

TGZB

r

a32 a22 (Iy - IZ)

al2 a32 (I Z - IX)

a12 a22 (I X - Iy)

(17a )

(_Tb)

(17c)

Relationships which incorporate the principal moments of inertia, IXX , Iyy,

and IZZ are

Iy- IZ

IZ - IX

IX - Iy

IZZ - Iyy I

IXX- IZZ

Iyy- IXX

(18a)

(18b)

(18o)

For a circular orbit, the square of the orbit angular velocity is

2 _h_
% --

R30
(19)

SGC 92OFR-I

Volume III Page 262



|@

!

!

!

!

!
|

I

I
I

I
I

I
I

I
I

I
I

Combining (17), (18) and (19) yields the desired torques in body axes

TGX B =

TGy B =

TGZ B =

3 _20 (Izz - Iyy) a22 a32

O

3 _o_ (Ixx - IZZ) al2 a32

3 2 (iyy - IXX) a12 a22

(202)'

(2Oh)

(20°)

From the nomenclature, the direction cosines may be put in the form

al2 = cos $ sin e sin k - sin $ cos

a22 = cos $ cos _ + sin $ sin e sin k

a32 = cos e cos k

for

= _-_

The off orbit normal pointing angle, 5, is such that

(212)

(2Zb)

(2zc)

(22)

cos _ = cos e cos _ (23)

Relations _0) through _3 ) are used to find the gravity gradient torques for

selected orientations, _ and _ e, and _. Secular and periodic components of

torque can be recognized and calculated more readily when the following forms

are used

GX = 3 a22 a32 (24a)

Gy = 3 a12 a32 (24b)

GZ = 3 al2 a22 (24c)

Trigonometricm&nipulations/of(_l:) yiel_the fozms

GX = GXA + GXp sin (2X + @X ) (252)

Gy = GyA + Gyp sin (2X + _y) (25b)

Gz = GZA + GZp sin (2X + _Z ) (25c)

SGC 920FR-I

Volume III Page 263



i@

I
I
I

I

I
I
I

I

which show the periodic components to have twice the orbital frequency. Secular

or average values of the torques have the factors

II 3GXA = _ cos _ (26a)

i iGYA = 3 c°s _ tan'2 (26b)

3 cos _ tan , (26c)GZA = 2

Magnitudes of the periodic torque components have the factors

II [ ]l3 cos 2
GXP = 2 _ (1-tan2 _) + sin2 _ (27a)

iIGyp = _ sinC_2 (27b)

i

sin _ (l-cos 2 _ tan 2 _)_ (27c)GZP = 2

At this point, uncertainties in moments of inertia will be in-

corporated by defining quantities as follows:

I _x_ _IV% _"= (Izz - Iyy) + -_- + Iyy (28a)

i AIy __A (Ixx - IZZ ) + 3_I-I VI_ + I2"zZ (28b)

I

I
I
I

I

AIz Z_ _ IXX) + 3cI V _ 2"= (Iyy T I + IXX (28c)

3o 1

where i00 T represents the uncertainty in percent.

and _8 ) yields

Combining (20), (24),

2
TGXB = _0 GX Zhlx (29a)

2
TGYB = _0 Gy ATy (29b)

2

TGZB = _0 GZ AIz (29c)

I

I
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Peak gravity gradient torques are obtained by substituting in (29)

Gx --la_l + laxPi (3o_)

% = I°YAI + I°_1 (30b)

% _- 1Oral + I%PI (30c)

Peak angular momentum to be stored based on a momentum dump cycle of once per

orbit is obtained by integration of (29) or, correspondingly, (25) over one

orbital period and allowing the periodic component to be maximum. The re-

sultant angular momentum is

I

HGX = _0 ZkI X 12_

H_v = _ Zklv 12_

HGZ = _0 £_Iz 12_

axAI + I_I1e (31a)

_ Szp_ I

GZAI + 2 (31c)

For evaluation of peak torques and angular momentums, a worst case orientation

is used. Average angular momentums to be dumped per orbit are the first terms

of the right hand members of (31) evaluated at the average off normal

orientation.

It is interesting that angular momentum per orbit is proportional

to the orbital rate and not the square of the orbital rate in (31). The form

of (31) is to facilitate comparison of the gravity gradient disturbance with

disturbances of other orgin. Angular momentum per unit time would retain the

squared relationship.

The "G" coefficients obtained as described above are given in

Table 4.3-3 based on the values of _ given in the Mission Specifications, Sec-

tion 4.3.1. The corresponding torques and angular momentums Shown in normalized

form are given in Table 4.3-4.
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Torque and momentum requirements of gravity gradient origin are

to be determined. A suggested method of alleviating gravity gradient disturb-

ance effects would be to spherically balance the vehicles by use of weights on

extendible booms or by addition of solar panels at right angles to those pro-

posed for the SB configuration. An estimate of the radius of gyration and

weight requirements to achieve spherical balance is shown in Table 4.3-5 for

both configurations. The minimum moment of inertia that can be obtained is

found to be greater than the largest without spherical balance; approximately

8% for the NB configuration and 2% for the SB configuration the weight and

radii of gyration for the SB configuration assuming a battery for a mass is high.

The radius of gyration is a lower bound on boom length; weights indicated are

boom weight plus end weight. The assumption that spherical balance can be

achieved has been carried into the requirements caused by gravity gradient to

compare results with those for the non-balanced configurations. Account is

taken of the increased moment-of-inertia and a 5% three sigma uncertainty is

assigned to the spherical balance as compared to 2% for the non-balance. These

are thought to be conservative moment-of-inertia uncertainties based on Space-

General experience with the OV3 satellites which have rigid specifications on

control and determination of moments-of-inertia in order to satisfy spin sta-

bilization requirements.

Results are shown in Table 4.3-6 linear momentum or impulse re-

quirements are based on the couple arm lengths available on the basic structure.

That is,

HGX

IGX = 4x (32a)

HGy

IGy = Z (32b)
x

HGZ

ZGz = _ (32c)
X

Total momentum dumping requirements for the first year are calculated from

IGT = NO (IGx + IGy + IGZ) (33)
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for NO the number of orbits in a year and using first year values. The result

of (33) with second year values is added to the first year total to obtain

total requirements to the end of the second year and is added again for require-

ments to the end of the third year.

Interestingly enough, total momentum requirements are greater for

the spherically balanced NB configuration than for the non-balanced NB config-

uration. It is noted that the NB configuration moments of inertia are separated

in value by no more than 8%. The combined 5% uncertainty and 8% increase in

moment of inertia is less favorable than an 8% imbalance and 2% uncertainty.

The SB configuration with spherical balanced has requirements

which are approximately one-fifth, those with non-balance; but, as previously

stated, boom weight and length requirements to balance the SB configuration are

excessive.

Magnetic Field

The magnitude of disturbance torque caused by interaction of the

magnetic moment of the satellite with the magnetic field of the earth is to be

determined. The rationalized MKS system of units will be employed.

Based on a magnetic dipole representation of the earth magnetic

field, the maximum magnitude of magnetic intensity at orbit radius is given by

ME
_. : (34)

2_ l.tO R03

for ME the earth magnetic dipole strength.

is given by

}M : Ms x _E

Magnetic torque on the satellite

(35)

for MS the magnetic dipole of the satellite.

Ms ME
TM =

2_ _0 R03

Thus, the maximum torque is

(36)

SGC 920FR-I

Volume III Page 267

I



|@

I
I

I
I

I
I
!

I
I

I
I

I
I

I
I

I
I

The three sigma value of M S derived in Section 4.3.2 for the "B" power profile

is

M S = 2.3 x 10 -6 weber-meters.

Values for ME and _0 are

ME = 4_ x 8.1 x 1015 weber-meters

and

_0

4_ x 10 -7
weber 2

2
newton-meter

Thus, for the assigned magnetic moment of the spacecraft,

= 1016 i
TM 2. 967 x --

_3
(37)

The largest angular momentum, HM, that could be caused by magnetic effects

over one orbit is

HM = TM P0

for PO the orbit period. The following values are obtained at altitude

(km) (10 -3 N-m) (N-m-sec)

750 O. 082 O. 491

1635 o. 058 o. 412

Aerodynamic Pressure

An estimate of the magnitude of aerodynamic disturbance will be

made using the areas, area centroid locations, and surface reflection coeffi-

cients of Section 4.3.2. For _ = _' = i, the aerodynamic pressure on a

surface will be

PA : 2 Q cos _ (38)
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and the resultant aerodynamic force will be aligned along the relative velocity

vector. In (38), Q is the dynamic pressure and _ is the angle between the

relative velocity vector and the normal to the surface.

The NB and SB configurations will be treated separately. Consider

the NB configuration in Figure 4.3-1 with geometry given in Table 4.3-2. For

the relative velocity in the XB ZB-plane and _ the angle between the XB-axis

and the relative velocity vector, the aerodynamic torque about YB that results

from use of (38) and from association of appropriate force components with

area moment arms is

TAy

Q -

+

+

(-z_ _x + xAZ%)

(zAX Ax - xAZ A z) cos 2

(xAX AX - zAZ A Z) sin 2

(39)

+ (XAxA x- ZAzA z) sin2

when divided by dynamic pressure. In (39), the conservative, but rather gross

assumption is that the projected areas are the wetted surfaces. The maximum

value of (39) is

TAy

Q (-zAX A x + xAZ Az

[_ _ _+_x_÷ _(XAx + zAX) Ax zAZ) A z

(xAXzAZ+ mAXXAZ)Az AX]
1/22

(40)

Numerical values of Table 4.3-2 are used to compute the right hand member of

(40) except that where zero appears for area centroid location, 3_eA = O.1

meters is substituted.
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Numerically,

TAy

Q

56 meter 3 (41)

A similar procedure for the SB configuration of Figure 4.3-2

yields a maximum torque to dynamic pressure ratio in a worst case orientation

of

TAZ

(YAxAX + mayA_)

2 2 2 2 2 2+ (xAX + YAX ) A X + (xAy + yAy) Ay

-2 (xAX YAY + YAX xAy) Ay AX]
1/2

(42)

Numerically,

T. --

_--_ = 1500 meters J (43)Q

for the SB configurations.

A "worst case" angular momentum requirement over one orbit will

be found from the maximum torques by

_A = _A Po (44)

for PO the orbit period.

Dynamic pressure varies with solar activity approximately three

orders of magnitude during the operational era. The maximum at maximum solar

activity occurs circa 1978. Using this maximum dynamic pressure, numerical

values for "worst case" aerodynamic disturbances are as follows.

Configuration

NB

NB

SB

SB

Altitude_ h

(_)

75o

1635

750

1635

Maximum

Torque, TA

(10-3 N-m)

Maximum

Angular Momentum, HA
(N-m-see)

O. 29 i. 73

O. 0019 O. 013

8.3 45.o
•o5 .4
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Solar Pressure

For the coefficient of solar reflectivity, PS = 0 as discussed

in Section 4.3-2_ solar pressure in the vicinity of earth is very closely

equal to aerodynamic pressure at 750 km during a period of maximum solar

activity. Also_ for PS = O_ resultant forces are parallel to the direction

of incident photons. The effective coefficient of drag that resulted from _ =

a' = i for aerodynamic calculations was CD = 2. It can be concluded_ then that

maximum solar pressure effects will be one-half the aerodynamic effects at 750

km altitude and at maximum solar activity. Solar pressure effects are then as

follows for the altitudes considered.

Configuration

NB

SB

Maximum Maximum

Torque_ TS Angular Momentum
Over One Orbit, HS

(i0 -3 N-m) (N-m-sec)

0.15 0.863

4.±_ _._

4.3.4 STELLAR SENSORS

Stellar sensors have been developed by a number of industrial

firms. Of these, SGC has developed and demonstrated a sensor for use with

the Fine Attitude Control System (FACS) of the Aerobee rocket series.

The SGC stellar sensor is designed to provide signals_ to the

FACS; which are proportional to the Aerobee roll axis angular deviation from

a selected star for + 16 arc minutes, and constant from + 16 arc minutes to
k D

4° . The pointing accuracy of the sensor output (in pitch and yaw) is + 5
n

arc seconds with a confidence level of la, and 28 arc seconds at 4o. When

used in conjunction with the Aerobee system, the pointing accuracy is improved

because of "inertial filtering".

The figures quoted are true with the condition that the selected

star is a G-0 type, and has a visual magnitude of +3.0 at the earth's surface.

If brighter stars are selected_ the sensor signal accuracy is improved approxi-

mately in proportion to the square root of the brightness ratio. Thus, if the

selected star were Deneb, a +1.33 magnitude star which is visually 12 times as
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bright, as a 3rd magnitude G-O star, the 4_ accuracy is about + 9 arc seconds.

This neglects photometric wave length response and mechanical noise.

The accuracy of the SGC sensor is, of course, noise limited.

The sensor noise is generated mechanically and electrically. The latter is

predominant and primarily derived from the light sensing multiplier phototube

employed in the system.

Some of the design restrictions imposed upon the present stellar

sensor affect its potential accuracy and operational life. These restrictions

include the mechanical envelope (.42M long and .13 M diameter), the field of

view required for star acquisition (8° optical cone apex angle), and a require-

ment for a mechanically precise light chopping motor.

While, in theory, SGC sensors could be used with DSMCS, it is

doubtful that the present design is suitable; particularly, when consideration

is given to the long operational period required. On the other hand, from the

experience gained during the development of the present sensor_ it can be stated

that a suitable sensor system can be developed. For example_ if the mechanical

envelope is lengthened, mechanical tolerances can be relieved. By reducing the

field of view for acquisition to i0 or 20 arc minutes, the requirement for a

precision motor is eliminated. (This motor is used to rotate a reticle having

a precise and complex pattern. With a reduced acquisition field angle_ it is

possible to employ fixed reticles and other techniques for modulation in the

optical regime.)

Obviously, it is impossible to provide a detailed design for a

stellar sensor suited to the DSMCS at this time. However, it is suggested

that a single sensor for DSMCS attitude control can be contained in an envelope

having approximate dimensions of .61M x .25M x .13M. The largest dimension

might be halved by using folding optics.

The operational life of the SGC sensor is probably limited by

the chopper motor. This motor includes ring bearings with tolerances held to

1.27 x 10 -6 meters, i x 10 -6 meters is equivalent to one arc second pointing

angle_ so it can be surmised that, even barring catastrophic failure, it is
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probable that the motor driven reticle would go far out of alignment during the

desired operational period.

By eliminating the precision motor, the operational life will

likely be determined by electronic coi_onents and the state of the art.

In conclusion, it is suggested that sun sensors will be employed

for the initial orientation of the stellar sensor carrier; and that sun sensor

present attainable accuracy is about 6 arc minutes which is well within the

stellar sensor acquisition field suggested previously.

4.3.5 ATTITUDE CONTROL SYSTEM

A functional block diagram of a fluid flywheel attitude control

system under consideration for the DSMCS is shown in Figure 4.3-5. The fluid

flywheel as described in Reference 19 consists, basically, of adc conduction

pump which pumps mercury through a closed loop of stainless steel tubing. It

produces a control torque on the spacecraft as long as there is a rate of

change of the mercury flow velocity. As indicated in Figure 4.3-5, a power

converter is required for the pump. There are no bearings in the system. If

an electromagnetic pump were employed instead of the dc conduction pump, there

would be no moving mechanical parts. The tubing may be routed about the struc-

ture of the vehicle within bend radius limits; thus, the center of the vehicle

need not be obstructed.

The flywheel subsystem has a rapid and well damped response with-

out added compensation. It has negligible breakaway torque. Therefore, the

accuracy of the system is limited only by the sensor.

GASEOUS N2 SYSTEM

A conceptual design of a gaseous N2 ACS and velocity trim system

is shown in Figure 4.3-6. This design is to demonstrate feasibility only. The

design criteria is:
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Total Impulse

Minimum Thrust Level -

Maximum Thrust Level -

Environment

Lifetime

Iz_ _ in3 #zn nnn ix .... )

67• x 103 N-see (15,000 ib-sec) each sphere

•045 newtons (0.01 ibs)

•45 newtons (0.i ibs)

space (750 km altitude)

i year

The resulting system has the following component requirements:

1)

2)

3)

The weight summary is

Gas Bottles

GN 2 Wt -

Nozzle Wt

Line Wt

Solenoid Valves -

Explosive Valves -

Regulators

Surge Cha_er

Filter

4300 kg/cm2- Gas Bottles - i meter dia. spheres with 1.25 cm walls

Gas Temperature (Time Averaged) - 120°C

Reaction Nozzles - .23 cm Throat Dia. with a 60:1 expansion

ratio (e = 60)

_ine _lzes - _•p cm x 0.064 cm Tubing

115 kg (empty)

90 kg (each bottle)

•023 kg each (includes mounting provisions)

o.o27k_/m

0.54 kg each

0.23 kg each

• 45 kg each

• 9 kg each

•25 kg each

Upon initiation of the system_ the explosive valve in one bottle

outlet is activated open simultaneously with the valve at the inlet of the 143 kg/

2
cm regulator which gives the 0.45 newtons thrust level capability• When the

need for the .45 newtons thrust level has expired, the explosive valve in the

SGC 920FR-I
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143 kg/cm 2 regulator outlet is commanded closed and the valve at the inlet of the

i psia regulator is commanded open. This drops the system thrust capability to

•045 newtons. When the first bottle pressure drops to 1430 kg/cm 2, the second

bottle is activated.

The system is fabricated of aluminum with all welded construction

to minimize leakage possibilities. The solenoid valves are normally closed,

pilot operated valves.

The GN 2 gas supply requirement is based on a specific impulse

valve of 75 seconds. This is arrived at by using an effective nozzle thrust

coefficient of 1.5 (85_ nozzle efficiency) and a gas temperature of 120°C.

This high gas temperature is achieved by using a bottle surface finish with a

solar absorbtivity to infra-red emissivity of 4 (polished aluminum). The usable

required N2 in each bottle is 90 kg.

4.9.6 RESUi_
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Angular momentum requirements were computed for all the signi-

ficant perturbing forces exerted an DSMCS. Torques induced by the satellite

magnetic moment acted upon by the earth's field, aerodynamic pressure and solar

pressure were found to be small compared to that caused by gravity gradient

torques. The angular momentum per orbit necessary to correct for gravity

gradient torques was calculated for 2 satellite configurations, a small RTG

powered system (B profile) and a solar cell powered system (B profile for i

year 1600 km). This total momentum was two orders of magnitude higher for the

solar cell configuration as for the RTG configuration assuming neither has been

balanced. Because the gravity gradient torque is proportional to the differences

in the moments of inertia along orthogonal axis, a further reduction b__ a factor

of five was possible for the solar cell powered system by balancing. Balance

along the three axis of symmetry was achieved by deploying the power system

battery normal to the solar array about 16 meters from the satellite center

of r_ss. RTG powered system balance could be achieved by two small weights

14 kilograms orthogonal to and about i0 meters from the axis of s_metry.

The RTG imbalance is so small_ six percent, that it could probably be corrected

by appropriate location of equipment within the satellite.
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The recommended method of stabilizing DSMCS is with a fluid fly-

wheel system and N2 thrustors. The flywheel momentum is dumped once per orbit.

The system suggested is completely redundant including an extra i00 percent

fuel resource. All the major component masses of the ACS scale with the total

momentum above the system described. A 270 kg ACS is required for the RTG

configuration and 2700 kg for the solar cell spherically balanced configura-

tion. Fuel consumption or ACS mass is nearly proportional to time for a given

DSMCS_ since initial maneuvers consume only 5 percent of the first years

momentum. The 50 percent spherical and 2 percent non-spherical moment of

inertia uncertainty is conservative. With effort the 3 sigma value could be

reduced to one percent thus decreasing the larger spherically balanced system

mass by a factor of five.

The ACS system design and size was found to be relatively inde-

pendent of the platform stability accuracy over a 3 to i range assuming a rel-

considered are very close to those worked in this section.

Alignment of the tracking antenna to the line of sight in the

sense of nulling antenna output error to specifications appears feasible. How-

ever_ the accuracy of determination of satellite and antenna pointing directions

for spacecraft ephemeris data and for antenna calibration appears to be limited

to 0.15 millirad with state-of-the-art equipment and is projected to be no

better than 0.09 millirad in the operational era. This is considered further

in the system tradoff discussion.
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M_ss

(lO3 kg)

m

6.3

9.7

Table 4.3-1

WEIGHT AND BALANCE

Moments-of-inertia

(lO4 kg-m2)

.IXX Iyy IZZ

1.9 6 2.1 2.1

22.5 11.6 11.6

Hub c.m.

Location

(m)

2.7

2.0
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Configuration

De signation

NB

SB

Table 4.3-2

3.68

SB 4.00

,SGC 92OFR-I
Volume III

GEOMETRY

Worst Case

Projected Areas

(m 2 )

AX Ay Az _X

Couple Arms

(m)

14.5 13.7 13.7 3.2

415 415 14.0 3.0

Worst Case Projected Area Centroid Locations

(m)

_r

3.05

3.05

XAX YAX ZAX XAy YAY ZAY x_ YAZ zAZ

0 0 1.32 1.5 0 1.32 0

0 0 0.67 1.5 0 4.35 0

1.5

1.5
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Table 4.3-4

NORMALIZED TORQUES AND ANGULAR MOMENTUMS

FOR GRAVITY GRADIENT

TGYB/WoAI Y TGZB/W_AI Z

Peak torques 3.0 1.5 1.3

Peak angular momentum

to be stored (one orbit)

%X/w0 AIX HGy/wO AIy HGZ/a_oAI Z

Secular angular momentum

to be dumped per orbit

(ist year)

10.2 5.1 4.4

Secular angular momentum

to be dumped per orbit

(2nd & 3rd years)

9.0 1.9 1.8

SGC 920FR-I
Volume III

9.2 1.6 1.6
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Table 4._-5

ESTIMATE OF REQUIREMENTS

TO ACHIEVE SPHERICAL BALANCE

i I + IXX iyymx_ :_ Ioo - - Izz

s i !i00 IXX + !yym Yb = _ - - IZZY

2 i
mz : [ I00 -zb - IXX Iyy + iZZ

and m are the masses to be deployed to radii of gyration
mx, my, z

xh' Yh' and Zb, respectively; there is one along each axis %, YB'

and ZB, respectively. I00 is the resultant moment of inertia about

each axis.

NB Configuration: IXX < Iyy : IZZ

Minimum I00 : Iyy + IZZ - IXX

I00 = 2.24 x 104 Kg-m 2

2

mx Xb = 0

2 s 104 2
m Yb = m zb __ .14 x kg-m
y

14.0 kg at i0 m

This imbalance of 64 could probably be corrected by careful location

of equipment inside cylinder volume.
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Table 4.3-5 (Continued)

ESTIMATE OF REQUIREMENTS

TO ACHIEVE SPHERICAL BALANCE

SB Configuration: IZZ = Iyy _ IXX

Minimum I00 = IXX + Iyy - IZZ

I00 = 2.3 x 104 Kg-m 2

106
mx Xb -_ "_6 x kg-m 2

450 kg battery at 16m.

2

mz Zb = my Yb = 0
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Orbit

%

Satellite Center-

of-Mass

XI

YI

ZI

Xo

_o

Zo

o o]
+ sin ?7 cos

Figure 4.3-3. Relationship Between Orbit-Plane

Axes and Inertial Axes
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Satellite

Center of _mss

For _ = 0,

cos (% =

/
/

/
/

YB

ZB

"cos e cos

cos e sin

-sin e

cos e cos

cos e sin

-sin e

cos e cos @

Figure 4.3-4.
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cos _ sin @ cos ¢

+ sin _ sin

sin _ sin @ cos

-COS @ sin

cos e cos

-sin @ cos _ sin e

cos @ sin @ sin e

0 cos e

Relationship Between Body Axes and

Inertial Axes
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4.4 ENVIRONMENT CONTROL

4.4.1 SOLAR PANEL THERMAL CONTROL

The power output of solar cells varies inversely with their tem-

perature; i.e., increasing temperature results in a decreasing power output.

This facet of solar cell technology implies a potential trade-off between tem-

perature control methods and illuminated solar cell area. As an example of

this phenomenon, the temperature of a solar cell wlhose front surface is ini-

tially normal to the solar vector will decrease in temperature as the angle be-

tween the surface normal and the solar vector is increased from zero. This

temperature decrease will result in an increase in the solar cell's power out-

put_ however 3 the decrease in intercepted solar energy will also decrease the

electrical power output of the cell. Therefore, there is some angle at which

the solar cell power output is a maximum. The value of this angle is highly

dependent on the design characteristics of the electrical _ower system such as

low voltage cut-off, solar cell covers, over voltage control method, etc.

To illustrate tradeoffs between competing systems, three hypo-

thetical temperature control systems will be utilized in a simplified approach

to find the one which gives the maximum illuminated solar cell surface area

under the constraints of fixed gross area and panel temperature. The three

subsystems are:

(i) An active system using a liquid cooling loop and a radiator

oriented so as not to see the sun on the two radiating
surfaces.

(2) A passive system which uses surface backed mirrors to re-

duce the area averaged solar absorptivity to infrared

emissivity ratio.

(3) A passive system which varies the angle between the solar

vector and solar cell surface normal to achieve desired

temperatures.

In all systems it will be assumed that the back side of the solar cell panel

assemblies are radiating to space with an effective emissivity of 0.9 and that

steady state conditions prevail.
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The thermal energy balance for a unit area of solar cell is:

S_sCOSe (l-_s) (l-x) +x%Scose-

|,

(i _) _s s - % = o

where
S

S

8 =

X --

_A

E =
S

_A =

EB =

=

T =
s

%=

solar constant

solar cell solar absorptivity

angle between solar cell normal and solar vector

decimal fraction of solar cell panel covered by surface
backed mirrors

surface backed mirror solar absorptivity

solar cell I-R emissivity

surlace backed mirrur ±-n _mi_ivlbj

rear surface absorptivity

Stefan-Boltzman constant

solar panel temperature (fore and aft)

heat transferred to cooling medium.

The heat transferred to the cooling medium_ QL_ may be written as

T4= C% 2 eR Yr r

where
eR =

Yr =

T =
r

radiator I-R emissivity

radiator area relative to solar panel surface

radiator temperature (Tr < Ts )

The ratio of solar cell illuminated area to gross area for each

of the systems may be written as follows:
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System (i) - Active using cooling loop

A
s i

A l+y
g

System (3) - Passive using tilt angle

A
S

-- = COS e
A

g

System (7) - Passive using surface backed mirrors

A
s

-- = 1 - x
A
g

The numerical values for each system are shown in Table 4.4.1-1.

Inserting the values in Equation ( i ) and solving for x, y, or

cos @ and the illuminated area ratios (As/Am) , we find the values in Table

4.4.1-2. In this example, subsystem (3) has the best value of the parameter

(As/Ag). This would then have to be placed in the satellite systems study to

determine the weight penalties required to achieve and maintain this angle.

The effects of temperature are shown in Tables 4.4.1-3 and 4.4.1-4

where the solar cell temperature (Ts) was taken as +40°C and O°C, respectively

and the radiator temperature (TR) to +lO°C and -30°C, respectively.

In the three cases considered, subsystem (3) has the best per-

formance. From these results, subsystem (i) is not worthy of further consid-

eration. However, subsystem (2) would probably show significant improvement

with small changes in the back-surfaced mirrors absorptivity and emissivity

values.

4.4.2 RTG POWER UNITS

RTG units now available or currently under development have cer-

tain common thermal limitations imposed on the user:
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(1)

(2)

(3)

(4)

The RTG radiation surfaces are normally at temperatures

of 600°K or higher.

The RTG mounting points are partly insulated but still

too hot for mounting directly to metal surfaces of

electronic componer_s. Therefore additional insulation

at the mounting is usually required.

A 2_ steradian field of view for each RTG is desired and

little deviation is permissible. Blocking the RTG's

field of view would cause non-uniform cold junction

temperatures, mismatching the thermal electric units_

and reducing output and life. An object blocking the

radiation view of an RTG and having the same character-

istic dimension should in general be no closer than
two or three characteristic dimensions.

The RTG is designed to accept temperature gradients caused

by the sun shining on one side only. This gradient is

of the order of 303°K.

With these general thermal characteristics the integration of

multiple RTG units into a DSMCS could be accomplished as follows:

(i) A mounting location such as shown on Figure 4.4o2-1 is

desirable to maximize the RTG view of space.

(2) A three unit group of RTG's offers the best view factors

for the units. The use of parabolic reflectors to re-

flect heat rays to space and not back to the RTG's can

be used effectively in this configuration to increase

the packing efficiency° Tne mounting is noted to be a

section of a three sided pyramid. This mounting seems

to have the following advantages:

i. Packaging of the RTG is most efficient.

2. Parabolic reflectors can be used effectively to

avoid local _at_ng of the RTG's.

3. The configuration permits radiation cooling of

mounting struts.

The reflectors should be insulated with superinsulation to limit

heat flow to the mounting system. Structural fiberglass mounting systems have

been analyzed and found to be effective. The RTG mounts are expected to be at

approximately 500°K and fiberglass insulating mounts would drop the structural

temperatures to 300°K if radiation cooling of the struts is provided. This is
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desirable in order that the structural mounts of the RTG system may connect

directly to the electronics area and provide a room temperature environment.

In addition to this conventional approach_ use of waste RTG

thermal energy to heat attitude control system stored gas has been proposed in

the past to improve attitude control system efficiency.

4.4o3 MASER AMPLIFIER COOLING

The magnitude of the maser cooling problem at the level of one

watt continuous for ayear or more is such that the only reasonable solution is

a closed cycle heat pump. Over 2200 kg of liquid helium wouldbe required

(neglecting boil off) to last one year. This is a volume of approximately 20

cubic meters. A survey of the state-of-the-art on closed cycle refrigeration

systems was conducted. Only those refrigerators capable of 4.2°K are of inter-

est for the DSMCS. The best system noted has a specific power of lO00 (watts

_.7"_ _11@, Olf@_ _nn]In_ oow er at 4.2°K) and a soecific weight of 22 _g weight

over watts cooling at 4.2°K)° It is difficult to project this state-of-the-art

to the mid 70's however it is expected that an improvement of a factor of two

could be accomplished.

A table was prepared listing each manufacturer and his cryogenic

cooler in the survey. The following pertinent information was included in

Table 4.4o3-1.

nominal cryo-cooler temperature

cooling capacity

thermodynamic cycle employed

comments on system components

working fluid

total power input

system weight

typical cool'down time

design maintenance intervals

application (ground_ airborne_ space)
cost

status (commercially available or research and

development)
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The following figures were prepared:

Figure 4o4o3-1 - Specific power (input/capacity) vs temperature

for commercially available units and for units under development.

Figure 4.4°3-2 - Specific power (input/capacity) vs specific

weight (weight/capacity) for commercially available units and

for units under development.

The general requirements for cryogenic coolers for electronic appli-

cations (airborne and space) include lightweight construction, small size, low

power input, self-containment, easy maintainability, and high reliability.

A number of cryo-coolers of different types are presently commer-

cially available. Because of certain inherent deficiencies in each of the classes

or types of closed-cycle coolers, any one commercially available unit falls short

in fulfilling the requirements of optimum size_ weight, power requirements, cool-

..... +_ _l_h_1_v _d m_intenance-free oDeratin_ time. Performance speci-
............. 2 _a

fications for these "production" units are often quoted without sufficient

experimental data and must therefore be used with reservation.

Cryogenic closed-cycle coolers are also under development as company

sponsored efforts to improve the characteristics of "production" units, or as

irograms funded by the military. The latter generally involve new concepts

for specific applications.

An investigation was made to see if the DSMCS could provide a

special environment by which systems integration could provide improvements.

The possibility of using LN 2 (whose primary purpose is ACS propellant) to im-

prove the refrigeration cycle was investigated. The one year or more life

requirement resulted in an excessive LN2 requirements _nerefore this solution

alone was not suitable. The possibilities of using an oriented space radiator

was considered. First the oriented (to cold space away from both sun and earth)

radiator is not practical if RTG units are also used. Assuming that an oriented

radiator were used with a solar panel system then the effectiveness of the area

is given by Figure 4.4.3-3.
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Other considerations include the possibility that substantial

reduction in cooling requirement at 4.2°K may be accomplished by careful design.

A 1-watt load at 4.2°K was assumed for this work. Proper shielding with _uper-

insulation and possibly with LN 2 (ACS) could provide a substantial reduction in

cooling requirement especially if RTG units are not present.

4.4.4 TRANSMITTER WAVE GUIDE THERMAL CONSIDERATIONS

The energy loss in the first half meter of a DSMCS transmitter wave

guide is estimated at 2 kW. Clearly this amount of energy dissipation in a

small volume (about 0.3 cc) will require a cooling system. Figure 4.4.3-3 is

the minimum area requirement as a function of temperature of the radiator.

Figure 4.4.4-1 is an estimate of the minimum heat radiated and conducted to the

maser. Pending a more thorough analysis it appears that a fluid cooling system

wi_h a remote radiator is desirable. In addition, the connection between the

transmitter wave guide and the maser transmission line will require special

consideration. Most probably a disconnect with a radiation shield will be re-

quired. A cool-down period after transmitting and reconnection of the maser to

the horn would be required.

A major question concerns the relative location of the transmitter

and the maser. Tne transmitter dissipates a total of 20 kw with the wave guide

dissipating about 2 kW in the first foot. The maser cavity is to be held at

4.2°K therefore heat transfer from the transmitter and wave guide must be

minimized. Using superinsulation, which is highly effective in space vacuum,

and laterally conducting shields,the maser holder and the transmitter need be

only a few centimeters apart (probably less than 15 cm would be optimum).

Mounting and support systems are to be carefully designed. Nichrome electrical

wires are recommended wherever practical. Special support systems for the maser

cavity are recommended. Tension supports of glass or Nichrome are possible.

Impregnated fiberglass support chords have been used successfully on develop-

mental structures.

4.4.5 TRANSMITTER COOLING

The transmitter would occupy a volume of approximately 0.35 m 3,
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weigh about i00 kg_ and dissipate about 20 kW intermittently. Using these

assumptions the system temperature rise per minute of operation would be 20°C.

If operation were continuous_ the temperature level would be excessive (assuming

no special cooling system) at a level of about 700°K. Operation at the rate of

one minute per hour would result in a mean temperature of about 20°C with a vari-

ance of ±10°C. Operation at the rate of 2 minutes per hour would require radiator

area (about 1.4 m2) in excess of the normal area of the transmitter surface.

The transmitter will have high concentrations of power dissipa-

tion within the unit. Probably conduction paths to the sides for radiant

dissipation will not be adequate and a circulation fluid will be required. A

single phase system (liquid heat transfer fluid) is suggested. The pump for

this system would require minimum power_ being used to overcome flow friction

p_ovidc d t f .....

4.4.6 OTHER ENVIRONMENT EFFECTS

In addition to the thermal control considerations discussed in

the preceding sections_ radiation effects both natural and onboard and other

natural environment considerations were investigated. 0nboard radiation effects

from nuclear power sources are noted under power systems in Section 4.2.1 in

this volume. Environment effects on solar panel power systems are presented in

Section 4.2.2; Non-Nuclear Power Systems. Other environment considerations are

discussed in Section 3.3.2 under Radiation Belts_ Solar Plasma and Micrometeoroid

Flux.
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Table 4.4.1-i

SUBSYSTEM CHARACTERISTICS

Item

S

$

e

$

X

E
S

eA

SB

0

T
s

Y

T
r

CR

Subsystem

i 2 3
i ,,, ,,,

0.140 watts/Sq. Cm.

0.84

0 °

0.o5

0 ° Unknown

0

o.82

Unknown

0.i0

0

0.90

0.85

5.67 x 10 -12 watts/cm 2 - °K4

20°C (293°K)

Unknown

-lO°C (263°K)

0.90

0 0

@

Normally a function of 0 but will be assumed constant in this illustration.
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Table 4.4. i-2

SUBSYSTEM PERFORMANCE

(Ts = 20°C; TR = -10°C)

Item
Sub system

i 2

(As/Ag) 0.545 0.593 0.644

x - 0.407 -

y 0.834 - -

0 - - 50°

Table 4.4. i-3

SUBSYSTEM PERFORMANCE

(Ts = 40°C; TR = lO°C)

Item
Subsystem

i 2

As/Ag

x

Y

e

o.7oo

O.428

o.84o

33°

Table 4.4.1-4

SUBSYSTEM PERFORMANCE

(Ts = O°C; TR = -30°C)

Subsystem

Item i 2 3

As/Ag

x

Y

e

o.38o

1.63

0.415

0.585

o.430

64.5 °
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